
SLA-driven Management of Distributed Systems using the
Common Information Model

Markus Debusmann�

FH Wiesbaden - University of Applied Sciences
Kurt-Schumacher-Ring 18

65197 Wiesbaden, Germany
E-Mail: m.debusmann@computer.org

Alexander Keller
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, USA
E-Mail: alexk@us.ibm.com

Abstract

We present a novel approach of using CIM for the SLA-driven management of distributed systems and
discuss our implementation experiences. Supported by the growing acceptance of the Web Services Ar-
chitecture, an emerging trend in application service delivery is to move away from tightly coupled systems
towards structures of loosely coupled, dynamically bound systems to support both long and short term
business relationships across different service provider boundaries. Such dynamic structures will only be
successful if the obligations among different providers with respect to the quality of the offered services
can be unambiguously specified and enforced by means of dynamic Service Level Agreements (SLAs). In
other words, the management of SLAs needs to become as dynamic as the underlying infrastructure for
which they are defined.

Our work has shown that Web Services, as a typical example for a service-oriented architecture, can be ex-
tended in a straightforward way for defining and monitoring SLAs. On the other hand, SLAs defined for a
Web Services environment need to take into account the underlying managed resources whose management
interfaces are defined based on traditional management architectures, such as SNMP-based management
or the Common Information Model (CIM). As a solution to this problem, the approach presented in this
paper addresses the integration problem of how to transform a Web Services SLA so that it can be under-
stood and enforced by a service provider whose management system is based on a traditional management
architecture, such as CIM.

Keywords

Service Level Agreements, Web Services, Common Information Model, Inter-Domain Management
�Work done while author was an intern at IBM T.J. Watson Research Center.

1

1 Introduction and Problem Statement

Over the last year, emerging component based service architectures built on top of Web Services [9], such
as the Open Grid Services Architecture (OGSA)[5, 16], have been gaining increasing acceptance beyond
computing-intense scientific and commercial applications: It appears highly likely that the next generation
of e-Business systems will consist of an interconnection of services, each provided by a possibly different
service provider, that are put together “on demand” to offer an end-to-end service to a customer. Such an
environment – referred to as ’Computing Grid’ [4] – will be administered and managed according to dynam-
ically negotiated Service Level Agreements (SLA) between service providers and customers [10, 17]. Con-
sequently, systems management will increasingly become SLA-driven and needs to address challenges such
as dynamically determining whether enough spare capacity is available to accomodate additional SLAs, the
negotiation of SLA terms and conditions, the continuous monitoring of a multitude of agreed-upon SLA
parameters and the troubleshooting of systems, based on their importance for achieving business objectives.
A key prerequisite for meeting these goals is to understand the relationship between ’high-level’ SLA pa-
rameters and ’low-level’ resource metrics, such as counters and gauges. However, mapping SLA parameters
onto metrics that are retrieved from managed resources is a difficult problem [11].

This paper presents our approach for mapping SLAs, defined using the Web Service Level Agreement
(WSLA)framework (described in section 2), which is based on the Web Services Architecture, onto the
Common Information Model (CIM)[2]. Thus, the work described in this paper can be regarded as a pre-
cursor to future work on integrating emerging service architectures with traditional enterprise management
frameworks. The novelty of our approach lies in the way we address the following key questions; these
questions also reflect the structure of this paper:

1. How can SLA parameters be mapped onto resource metrics?
At the core of our approach to this problem is the WSLA language that allows a party involved in the
establishment of an SLA to define what is actually meant by an SLA parameter. Instead of merely
assigning thresholds to pre-defined SLA parameters, whose semantics vary greatly [1], the WSLA
framework, presented in section 2, allows the precise definition of how SLA parameters are supposed
to be computed and aggregated.

2. What SLA monitoring components ought to be implemented as Web Services? For which com-
ponents is CIM the better answer?
Based on an inter-domain SLA management scenario, section 2 breaks down the SLA monitoring
process into a set of elementary services needed to enable the management of an SLA throughout
the various phases of its lifecycle. Since we are dealing with a service architecture and a resource
management architecture, every service may be implemented either as a Web Service or based on
CIM. An analysis and an evaluation of the various options is given in section 3.1.

3. Which parts of the SLA should be modeled in CIM and how does a suitable model look like?
While this question is closely related to the previous one, there are a few additional implications
a suitable CIM model for SLAs needs to take into account: In particular, the CIM model needs to
provide a means for keeping data that relates to the definition aspects of the SLA while being able
to measure and store the actual SLA paremeter and metric values at runtime. Stated differently, the
measured values need to be tied back to their definitions and to the SLA in which they are defined.
Our solution to this problem, based on the CIM Metrics Model, is described in the remainder of
section 3.

4. How can one delegate management functions to an agent in a WBEM/CIM environment?
Traditionally, the purpose of CIM subagents (termed “providers”) is to make the instrumentation of
managed resources accessible to a CIM Object Manager (CIMOM). Providers respond to incoming
requests, retrieve the requested management information and return the results to a CIMOM. Thus,
they play a passive role in the management process by reacting to requests coming from a CIM client.

2

Since an SLA is usually associated with a schedule that indicates precisely when and how often the
measurements are supposed to be taken, a CIM provider needs to take an active role when carrying
out its measurements. Our approach to this classical problem of (statically, in our case) delegating
measurement functionality to agents [18], with a specific focus on SLAs and CIM, is described in
section 4.

5. Finally, how can one achieve Interoperability between the Web Services Architecture and CIM?
This is obviously a very broad question, for which a generic approach is likely to be as complex as
the well-known approaches for achieving interoperability between traditional management architec-
tures (for an in-depth discussion of this subject, see [14, 15]). Nevertheless, we have designed and
implemented a mechanism for deploying SLAs from a Web Service environment into a CIMOM and
a way to deliver measurements from a CIMOM back to a Web Service. Our experiences with the
proof-of-concept implementation are described in section 5. Our work can be regarded as a precursor
to future work dealing with the development of generic mechanisms for integrating Web Services
based management with existing management infrastructures.

2 The Web Service Level Agreement (WSLA) Framework

This section describes our work towards a flexible SLA monitoring framework, targeted at Web Services.
We have defined and implemented the Web Service Level Agreement (WSLA)framework [7] for defining
and monitoring SLAs in inter-domain environments. In [6], we have described the concepts behind WSLA.
Although it is not the purpose of this paper to describe WSLA in detail, we need to provide a brief overview
over WSLA and its principles to set the stage for our CIM based SLA model detailed in section 3 and the
architecture of our solution described in section 4.

Our approach to enable SLA-driven Management of distributed and highly dynamic systems, WSLA, con-
sists of a flexible and extensible language [12] based on the XML schema and a runtime architecture based
on several SLA monitoring services, which may be outsourced to third parties to ensure a maximum of ac-
curacy. WSLA enables service customers and providers to unambiguously define a wide variety of SLAs,
specify the SLA parameters and the way how they are measured, and tie them to managed resource instru-
mentations. A Java-based prototype implementation of the WSLA framework, termed SLA Compliance
Monitor, is included in the current version 3.2 of the publicly available IBM Web Services Toolkit 1.

2.1 SLA Lifecycle in the WSLA Runtime Architecture

Figure 1 depicts the typical lifecycle of an SLA in a multi-provider environment. The lifecycle consists of
the following straightforward phases: SLA creation, SLA deployment, SLA execution, and SLA termina-
tion. For the sake of brevity, the latter is not depicted in the figure.

The SLA creation process involves the negotiation and signing of an SLA by both a service provider and
service customer. During this process, a customer retrieves the metrics offered by a provider, aggregates and
combines them into various SLA parameters, defines service levels for every SLA parameter, and submits
the SLA to the service provider for approval. On the side of every signatory party(a party that signs an
SLA) a Business Entity carries out the negotiation: It embodies the business knowledge, goals and policies
of a party. Such knowledge enables the business entity to decide which service levels should be specified in
the SLA to ensure compliance with its business goals. A typical example for such a decision on the service
customer side is to define thresholds for response times or throughput, depending on the price the customer
is willing to pay. On the provider side, typical business actions are to decide if the SLA is acceptable
as a whole or whether the customer-specified thresholds are too restrictive. Once agreement on the main
elements of the SLA is reached, customer and provider may define third parties (which we call supporting

1The IBM Web Services Toolkit can be downloaded from http://www.alphaworks.ibm.com/tech/webservicestoolkit.

3

3rd Party Service Providers Service ProviderService Customer

time

Measurement
Service

Condition
Evaluation Service

Availability
Probe

Service Invocation

Management
Service

Aggregate
Response Time,

Throughput

Violation
Notifications

Measurement
Service

Response Time,
Operation Counter

Violation
Notifications

Management
Service

Client
Application

Offered Service
and Managed Resources

E
X
E
C
U
T
E

D
E
P
L
O
Y

C
R
E
A
T
E

Measurement
Service

Condition
Evaluation Service

Measurement
Service

Business EntityBusiness Entity
SLA Negotiation

SLASLA

SLA

SLA

Deployment
Service

Figure 1: Lifecycle of a Service Level Agreement in a Multi-Provider Environment

partiesin the WSLA context), to which SLA monitoring tasks may be delegated. Supporting parties come
into play when either a function needs to be carried out that neither service provider nor customer wants to
do, or if these signatory parties do not trust their counterparts to perform a function correctly.

Once the SLA is finalized, both service provider and service customer make the SLA document available for
deployment. The Deployment Service is responsible for checking the validity of the SLA and distributing it
either in full or in appropriate parts to the supporting parties. The latter is needed to ensure that a supporting
party service receives only the amount of information it needs to carry out its tasks.

In the scenario, we assume that a part of the SLA monitoring and supervision activities is delegated to third
party service providers. Typical services that may be outsourced to third parties fall into two categories:

� Measurement Service:
The Measurement Service maintains information on the current system configuration, and runtime
information on the metrics that are part of the SLA. It measures SLA parameters such as availability
or response time either from inside, by retrieving raw metrics directly from managed resources, or
outside the service provider’s domain, e.g., by probing or intercepting client invocations. A Measure-
ment Service may measure all or a subset of the SLA parameters. Multiple measurement services
may simultaneously measure the same metrics, e.g., a measurement service may be located within
the provider’s domain while another measurement service probes the service offered by the provider
across the Internet from various locations. For our discussion, we call metrics that are retrieved di-
rectly from managed resources Raw Metrics. Composite Metrics, in contrast, are created by aggre-
gating several raw (or other composite) metrics according to a specific algorithm, such as averaging

4

one or more metrics over a specific amount of time or by breaking them down according to specific
criteria (e.g., top 5%, minimum, maximum, average etc.). This is usually being done within a service
provider’s domain (depicted in figure 1 as the oval having a black background), but can be outsourced
to a third-party measurement service as well (measurement service with white background). Keynote
Systems, Inc. [8] is an example of such an external measurement service provider. In sections 4 and
5, we will describe our approach to implementing an internal measurement service (black oval in the
figure) in CIM and how it accesses managed resource instrumentation.

� Condition Evaluation Service:
This service is responsible for monitoring compliance of the SLA parameters with the agreed-upon
Service Level Objective (SLO) by comparing measured parameters against the thresholds defined in
the SLA and notifying the management services of the service customer and provider. It obtains mea-
sured values of SLA parameters from the Measurement Service and tests them against the guarantees
given in the SLA. This can be done each time a new value is available, or periodically.

Finally, both service customer and provider have a Management Service: Upon receipt of a notification, the
management service (usually implemented as part of a traditional management platform) will retrieve the
appropriate actions to correct the problem, as specified in the SLA. The main purpose of the management
service is to execute corrective actions on behalf of the managed environment if a Condition Evaluation
Service discovers that a term of an SLA has been violated.

2.2 Expressing SLAs in WSLA: The main Elements of the WSLA Language

In this section, we provide a brief overview over the WSLA language. For a more detailed discussion, the
reader is referred to [13].

Parties:
Signatory Parties
Supporting Parties

Service Description:
Service Operations

Bindings

SLA Parameters
Metrics

Measurement Directives

Functions
Schedule

Obligations:

Validity Period
Predicate
Actions

Involved Parties:
IDs and interfaces of signatory parties
IDs and interfaces of supporting parties
Service Characteristics & Parameters:
Operations offered by service
Transport encoding for messages
Agreed-upon SLA parameters (output)

Metrics used as input
How/where to access input metrics

Measurement algorithm
Measurement duration, sampling rate
SLOs, Guarantees & Constraints:
When is SLA parameter guaranteed?
How to detect violation (formula)
Corrective actions to be carried out

Figure 2: Typical Structure of an SLA

Figure 2 illustrates the typical elements of an SLA with signatory and supporting parties. Clearly, there

5

are many variations of what types of information and which rules are to be included and, hence, enforced
in a specific SLA. The Parties section, consisting of the signatory parties and supporting parties fields
identify all the contractual parties. Signatory Party descriptions contain the identification and the technical
properties of a party, i.e., their interface definition and their addresses. The definitions of the Supporting
Parties contain, in addition to the information contained in the signatory party descriptions, an attribute
indicating the sponsor(s) of the party.

The Service Description section of the SLA specifies the characteristics of the service and its observable
parameters as follows: For every Service Operation, one or more Bindings, i.e., the transport encoding for
the messages to be exchanged, may be specified. In addition, one or more SLA Parameters of the service
may be specified. Examples of such SLA parameters are service availability, throughput, or response time.
Every SLA parameter refers to one Metric, which, in turn, may aggregate one or more other (composite
or raw) metrics, according to a measurement directive or a function. Examples of composite metrics are
maximum response time of a service, averageavailability of a service, or minimum throughput of a ser-
vice. Examples of raw metrics are: system uptime, service outage period, number of service invocations.
Measurement Directives specify how an individual raw metric can be obtained from a managed resource.
Typical examples of measurement directives are the uniform resource identifier of a hosted computer pro-
gram, a protocol message, or the command for invoking scripts or compiled programs. Functions are
the measurement algorithm, or formula, that specifies how a composite metric is computed. Examples of
functions are formulas of arbitrary length containing average, sum, minimum, maximum, and various other
arithmetic operators, or time series constructors. For every function, a Schedule is specified. It defines the
time intervals during which the functions are executed to compute the metrics. These time intervals are
specified by means of start time, duration, and frequency. Examples of the latter are weekly, daily, hourly,
or every minute.

Obligations, the last section of an SLA, define the SLOs, guarantees and constraints that may be imposed
on the SLA parameters: First, the Validity Period is specified; it indicates the time intervals for which
a given SLA parameter is valid, i.e., when the SLO may be applied. Examples of validity periods are
business days, regular working hoursor maintenance periods. The Predicate specifies the threshold and
the comparison operator (greater than, equal, less than, etc.) against which a computed SLA parameter is
to be compared. The result of the predicate is either trueor false. Actions, finally, are triggered whenever a
predicate evaluates to true, i.e., a violation of an SLO has occurred. Actions are e.g., sending an event to one
or more signatory and supporting parties, opening a trouble ticket or problem report, payment of penalty,
or payment of premium. Note that, as stated in the latter case, a service provider may very well receive
additional compensation from a customer for exceeding an obligation, i.e., obligations reflect constraints
that may trigger the payment of credits from any signatory party to another signatory or supporting party.
Also note that these actions may be individually specified for every SLA parameter.

3 Integrating WSLA and CIM

This section describes the integration of WSLA and CIM. After discussing different integration alternatives,
we present our CIM model for representing SLAs and the principles of metric computation and aggregation.

3.1 Implementing SLAs in a Web Services and CIM Environment: Design Consid-
erations

Considering a SLA management environment as shown in figure 1 raises the question how the five services
are integrated in the most efficient way. Today, the business entity is normally a human being and there-
fore not subject to implementation. The management service represents the management platform run by
the service provider and customer. Thus, the key question for integrating WSLA and CIM is: Which of
the remaining services (deployment, measurement, condition evalution) should be implemented as a Web

6

Service and which services ought to be implemented in CIM? Three alternatives can be considered:

1. The first approach is to implement the services entirely in a Web Services environment. This ob-
viously simplifies the integration of the components and the delegation of services to third party
providers; however, the integration with a management platform and today’s managed resources is
challenging as none of them have a management interface based on Web Services. Therefore, a pure
Web Services based solution is highly unlikely.

2. Implementing all services on a CIM basis is the other extreme. This simplifies the integration with the
managed resources. However, if certain services are delegated to third party providers, this solution
makes assumptions about the management infrastructure of these service providers and thus limits
the flexibility of the overall SLA management system.

3. For maximum flexibility, it is crucial to find the right balance between those two extremes. In our so-
lution we chose the measurement service to be CIM based (depicted as a black oval in figure 1), which
highly simplifies the binding between high-level SLA parameters and low-level resource metrics as
well as the integration with management platforms. Making the condition evaluation service a Web
Service offers high flexibility to delegate this service to third party providers. The deployment ser-
vice is the gateway between both worlds by offering a Web Services interface for deploying the SLA.
The backend side the deployment service is able to communicate with the CIM based measurement
service in order to setup the measurements defined in the SLA.

3.2 Representing SLAs in CIM

For SLA-driven management, a formal representation of the agreed-upon definitions in a Service Level
Agreement is required such that a management system is able to automatically monitor and, in a subsequent
step, enforce the SLA.

Figure 3 depicts the CIM model to represent Service Level Agreements conforming to WSLA (see sec-
tion 2). As a result of the decision to implement the measurement service in CIM, the information model
reflects only the parts of a WSLA document that define the relationships of SLA parameters to low-level
resource metrics, the defined functions and the schedule for their retrieval.

The central model element is the IBM SLA class which ties together all the other elements comprising the
SLA. IBM SLA itself is inherited from CIM ManagedElement. Several instances of IBM SLA can exist in
parallel, thereby representing SLAs of different customers or even several SLAs of one individual customer.

The model strictly distinguishes between metric definitions and metric instances as defined in the CIM
Metrics Schema. This has the following advantages:

1. keeping both definitions and values together and thus linking information from the deployment and
runtime stages,

2. leveraging the power of CIM queries for SLA retrieval, e.g., retrieve all SLA parameters for a given
SLA instance,

3. enabling the service provider to develop a collection of common-off-the-shelf service metric defini-
tions that can be reused for different customers.

The IBM MetricDefinition is the central class for defining metrics of an SLA. This class inherits from
the CIM BaseMetricDefinition class.

We distinguish between raw metrics, composite metrics, and time series. As discussed in section 2.1, raw
metrics are simple resource metrics that are directly retrieved from the managed resources, e.g., this are
counters retrieved by SNMP, or values retrieved from a Web Service. Composite metrics are complex met-
rics computed by the SLA measurement service itself. The IBM ArithmeticMetric class connects two

7

CIM_PolicyTimePeriodCondition

TimePeriod : string
MonthOfYearMask : uint8[]
DayOfMonthMask : uint8[]
DayOfWeekMask : uint8[]
T imeOfDayMask : string
LocalOrUtcTime : uint16[]

IBM_Ra wMe tric
IBM_RawMetricDefinition

MeasurementURI : string
MeasurementType : Integer
Timeout : Integer

IBM_CompositeMetric

IBM_CompositeMetricDefiniti
on

Caption : string
Description : string
FunctionDefId : uint64
Name : string
InputParameters : string
OutputParameters : string

CIM_BaseMetricValue

<<key>> InstanceId : string
<<required>> MetricDefinitionId : string
MeasurementElementName : string
Timestamp : datetime
Duration : datetime
MetricValue : string
BreakdownDimension : string
BreakdownValue : string
Volatile : boolean

CIM_BaseMetricDefinition

<<key>> InstanceId : String
Name : String
DataType : uint16
Calculable : uint16
Units : String
BreakDownDimensions : string[]

0...0...

CIM_MetricInstance

IBM_Statist ica lCom positeMetricDefinition

Function : Integer

IBM_Schedule

Interval : Long

IBM_ArithmeticCompositeMetricDefinition

Operator : Integer

IBM_TimeSeriesDefi nit ion

Window : Integer

GetNewValue()

IBM_RawValuesDefinition

0..n0..n

IBM_SamplingPeriod

IBM_SLA

Name : string

0..*0..*

IBM_SL AVal idi ty

IBM_MetricDefinition
22

IBM_ArithmeticOperandDefinition

1..n1..n

IBM_SLAParameterDefin ition

IBM_SampleDefinition

IBM_ArithmeticCompositeMetricIBM_StatisticalCompositeMetric

IBM_Metric

1..n1..n

IBM_SL AParameter

nnIBM_MetricInstance

22 IBM_ArithmeticOperand

IBM_TimeSeries

Values : String []

GetNewValue()

IBM_RawValues

IBM_Sample

Figure 3: CIM Model of a Service Level Agreement

metrics through an arithmetical operator (+,-,*,/). The IBM StatisticalMetric class performs basic sta-
tistical functions, like average, min, max, etc., on collections of metric values. Metric collections are stored
using the IBM TimeSeries class, which holds metric values sampled in regular intervals. TimeSeries in-
stances may be used as input for several statistical metrics and thus ensure the integrity of data by providing
a shared basis for statistical calculations and reduce redundancy. These metric types allow the definition of
complex service parameters, such as the average utilization of network interfaces or the maximum reponse
time within the last hour.

To efficiently measure SLA parameters, metric values have to be retrieved automatically. The frequency
of the sampling is defined as part of the SLA and represented by the IBM Schedule class with properties
representing a start date, an end date, and a sampling interval in which a new metric value is stored in the
time series (cf. CIM association IBM SamplingPeriod). During runtime, instances of IBM Schedule

actively trigger the retrieval of metric values (see section 3.3 and 4.2). The other metrics are calculated on
demand when they are requested either from a CIM client or during the calculation process described in the
following section.

3.3 Metric Computation and Aggregation

Figure 4 depicts the runtime relationships between metric instances comprising a simple SLA. Two separate
activation mechanisms for calculating the metrics exist: timer-triggered (solid arrows) and request-triggered
(dashed arrows). In regular time intervals, a Schedule instance initiates the collection of a new metric
value for a TimeSeries object by invoking its GetNewValue() CIM method. This causes the collection
of the ArithmeticCompositeMetric associated with the TimeSeries, which is done by means of the
CIM operation getInstance defined in [3]. Before the ArithmeticCompositeMetric instance can be
calculated, its associated RawMetrics have to be retrieved. After the calculation is done the result is given
back and finally stored within the TimeSeries object.

8

AveragePackets :
StatisticalCompositeMetric

- Value : String

SampledPackets :
TimeSeries

- Values : String []

SumPackets :
ArithmeticCompos iteMetric

- Operator : Integer

Packets1 :
RawMetric

- Value : Strin. ..

Packets2 :
RawMetric

- Value : String

Schedule :
Schedule

- EndDate : Date
- Interval : Long
- StartDate : Date

Trigger: call
GetNewValue ()

CIM: getInstance

CIM: getInstance

CIM request
serviced by CIMOM

CIM: getInstance

CIM: getInstance

Figure 4: Example of aggregating raw metrics into composite metrics

The second possible activation mechanism is a CIM request from a CIM client. In our example, a request
for the StatisticalCompositeMetric is handled, thus the associated TimeSeries instance has to be
retrieved. After that, the average value is calculated based on the values retrieved from the TimeSeries

object.

4 Architecture of a CIM based SLA Measurement Service

This section addresses the architecture of our CIM based SLA measurement service. First, an overview
of the components is given; in the subsequent sections, the concept of active providers and the recovery
mechanism, which is needed to reactivate the providers after a restart of the measurement service, are
described in detail.

4.1 Overview

Figure 5 depicts the architecture of our CIM based SLA measurement service. Since the CIMOM is the
central component responsible for realizing the measurement service, the SLA structure has to be mapped
first onto a CIM model, as described in section 3.2. This model has to be loaded once into the CIMOM (1)
and appropriate providers implementing this information model have to be developed. Since all SLAs have
a common structure, this CIM model is the basis for all SLAs deployed to the CIMOM and is stored in the
class repository.

After the SLA model is loaded, SLAs of different customers can be deployed (2). In our implementation, the
deployment of SLAs is realized as a custom-based solution that fits the WSLA environment (cf. section 3.1).
Therefore, the deployment service offers a Web Services interface for receiving new WSLA documents, i.e.,
agreed-upon SLAs signed by the signatory parties. After receiving an SLA, the Web Service backend uses
an XML parser to analyse and process the SLA. If the document is valid, the backend sends a series of CIM

9

Class
Repository

Instance
Repository

Protocol Adapters
xmlCIM/http Java RMI

Context
Provider

Authentication

Service Interface

Pluggable Modules

Java Provider Interface

Agent Interface

CIM Object Manager WSLA/CIM
Schema

SLA Definitions
and Instances

WSLA WSLA WSLA WSLA Measurement Hooks Administration Interface

Resource Instrumentation

xmlCIM/http

Resource
Provider(s)

WSLA
Provider

Resource
CIM

SchemaAuthorization

CIM Client

WSLA Parser

Deployment Service

SLA
Instances

WSLA Schema/
CIM mapping

1

2

Figure 5: Architectural Overview of the CIM based SLA Measurement Service

requests to the CIMOM to create the CIM instances and associations representing the structure of the SLA.
This leads to the instantiation of all the “definition” classes, depicted on the left side of figure 3.

The management information of an SLA is offered by the WSLA provider. Logically, the CIMOM dis-
tinguishes between two types of providers: A WSLA provider and one or more resource providers. The
WSLA provider implements the CIM classes responsible for representing the structure of an SLA. These
CIM instances – like most instances in today’s CIM environments – are not subject to change after their
deployment. The resource providers are responsible for retrieving raw metrics from managed resources. In
the next step, the classes of the WSLA provider that relate to runtime metrics (depicted on the right side of
figure 3) calculate the SLA metrics. They are either triggered by IBM Schedule instances or CIM requests,
respectively.

4.2 Active CIM Providers

One of the major novelties of our approach is the use of active CIM providers. Until now, CIM providers
are stateless resource providers, i.e., they are passive and only surface information from managed resources
without providing sophisticated processing capabilities. Normally, the retrieval of information is initiated
by the management system. Stateless providers may cause a considerable overhead, e.g., by requiring
polling of new values from management applications.

In our implementation, the providers actively monitor the SLA by autonomously retrieving metric values
from managed resources and calculating high-level SLA parameters without being triggered by a manage-
ment application, whose request is then dispatched by the CIMOM to the appropriate provider. The retrieval
of new metrics is automatically requested by the provider implementing the IBM Schedule class of the in-

10

formation model (see section 3.3). Making use of this delegated management functionality the overhead
caused by polling can be decreased significantly.

4.3 Recovery Mechanism

SLA management requires the continuous monitoring of SLA parameters and metrics. Thus, it must be
ensured that the providers remain active in order to perform their measurements. Since the CIM providers
are not loaded automatically, but rather on demand, there is the potential problem that the providers are
not reactivated after a restart of the measurement service. Since the monitoring is triggered by the provider
implementing the IBM Schedule class, it has to be ensured that the provider implementing this class is
properly reactivated.

In particular, two different cases have to be considered: First, the deployment of a new SLA and, second,
the restart of the CIMOM after a failure. When a new SLA is deployed to the CIMOM, the IBM Schedule

provider is loaded, since every SLA contains one or more instances of the IBM Schedule class. Thus, the
first case is not a cause for concern. However, in case of a CIMOM restart the providers are not loaded
automatically because in typical CIMOM implementations, providers are only loaded when an (external)
management application requests data from the CIMOM that needs to be supplied by the specific provider.
Thus, a certain recovery procedure has to be applied to ensure that the IBM Schedule provider is loaded
and the instances are activated to trigger the data collection for the IBM TimeSeries instances. This can
be achieved by forcing the CIMOM to load the provider by having a simple CIM client that enumerates the
IBM Schedule instances once the CIMOM has started. Such a command can easily be integrated into the
startup script of the CIMOM and thus is no limitation of our approach.

5 Prototype Implementation

The prototype has been implemented using the SNIA (Storage Networking Industry Association) CIMOM
v0.7 and the Java Development Kit (JDK) v1.3.1. In principle, every CIM class – as well as the associations
– is implemented by a separate provider. This ensures a high flexibility if the information model is undergo-
ing changes and reduces the complexity of individual providers. Encapsulating basic provider functionality
in a base class minimizes the implementation effort for provider developers.

enum Ins t ances (Tim eSeri es)

CIM OM Tim eS eriesP rovider S tatis ticalCom pos iteM etricP rovider

init ialize ()

en umIns t ances (S ta tis ti calCompos it eMetric)
init ialize ()

init ialize ()

Figure 6: Deadlock between different CIM provider classes

11

However, the principle of implementing every CIM provider on a per-class basis could not be hold up for
the implementation of the IBM ArithmeticCompositeMetric, IBM StatisticalCompositeMetric,
and IBM TimeSeries classes because of cyclic interdependencies between them (cf. fig. 3). Consider the
case when the CIMOM is restarted after a crash and the persistent instances have to be reloaded in order
to actively monitor the conformance of the deployed SLA(s). Each CIM instance of these metric classes
is associated with a calculation object that performs the retrieval of raw metric values and the metric cal-
culation. These calculation objects have to be initialized with the references to their associated objects.
Assuming an IBM TimeSeries instance has to be initialized, its associated class can be either of type
IBM RawMetric, IBM ArithmeticCompositeMetric, or IBM StatisticalCompositeMetric. If an
operand is either an IBM ArithmeticCompositeMetric or an IBM StatisticalCompositeMetric,
the attempt to resolve the reference to this instance would result in a request to the corresponding provider
without finishing the initialization of the IBM TimeSeries instances first (cf. fig. 6). During the initializa-
tion of the instances of the other provider, a single reference to an IBM TimeSeries instance would result
in an attempt to initialize the IBM TimeSeries provider again, thus ending up in an infinite recursion.

Combining the initially three separate providers into a single provider, now responsible for handling all
three CIM classes, solves this deadlock situation because all CIM instances are restored together from the
persistent storage. By doing so, the provider has all information available internally to resolve the references
without having to rely on other CIM providers. In case of deploying a new SLA, this problem does not occur
because the deployment service creates the instances in the correct order.

6 Conclusions and Outlook

We have presented a novel approach for SLA-driven management of distributed systems using CIM. Our
approach uses the WSLA framework to define and formally represent Service Level Agreements as XML
documents. To be able to connect to managed resources, these documents need to be transformed into a
representation compatible with typical management architectures. In our case, we assume a CIM based
management environment.

Our approach to solving this problem consists in developing a CIM based model for SLAs that preserves
the expressiveness of WSLA, which is populated by a deployment service whenever a new SLA needs to be
monitored by our system. The deployment service is implemented as a Web Service and is able to perform
the mapping of the SLA into a CIM based environment. As a result of the deployment, the CIM based
measurement service instantiates CIM objects representing the SLA definitions. During the runtime phase,
new metric data is collected from the managed resources and subsequently aggregated into higher-level SLA
parameters, according to the schedule defined in the SLA. This implies that the data collection is triggered
from within the CIM based environment by means of so-called active CIM providers. This new concept
goes beyond common CIM providers, which are passive and need to be triggered by external management
applications. The move from traditional stateless CIM providers to active CIM providers required the
development of new mechanisms, since typical CIMOM implementations are not geared towards active
providers; in particular, we had to address the problem of ensuring the smooth recovery after a CIMOM
failure. Other problems were caused by the interdependencies between different CIM providers, for which
we were able to find a solution.

While our work shows that it is possible to implement more advanced functionality – such as data collection
capabilities – with CIM object managers, a more general approach to CIM provider initialization is needed
to avoid potential deadlocks. In addition, the customized mapping of WSLA documents into the CIM
schema needs to be expanded to support the full interoperability of CIM with a Web Services environment.
Recent OASIS work on a new management protocol may be a first step to address this problem. However,
past experiences in the network management community with work on achieving interoperability between
management architectures suggest that the real issue consists in finding a mapping between the various
information models that preserves their semantics.

12

Acknowledgments

The authors express their gratitude to Bob Moore and Lee Rafalow of IBM for helpful discussions and
ongoing advice and for their help to making this work succeed.

References

[1] ASP Industry Consortium. White Paper on Service Level Agreements, 2000.

[2] Common Information Model (CIM) Version 2.2. Specification, Distributed Management Task Force, June 1999.
http://www.dmtf.org/standards/cim spec v22/.

[3] Specification for CIM Operations over HTTP, Version 1.1. Specification, Distributed Management Task Force,
May 2002. http://www.dmtf.org/standards/documents/WBEM/DSP200.html.

[4] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann,
1999.

[5] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of the Grid: An Open
Grid Service Architecture for Distributed Systems Integration. Draft, Globus Project, July 2002.
http://www.globus.org/research/papers/ogsa.pdf.

[6] A. Keller, G. Kar, H. Ludwig, A. Dan, and J.L. Hellerstein. Managing Dynamic Services: A Contract based
Approach to a Conceptual Architecture. In R. Stadler and M. Ulema, editors, Proceedings of the 8th IEEE/IFIP
Network Operations and Management Symposium (NOMS’2002), pages 513–528, Florence, Italy, April 2002.
IEEE Press.

[7] A. Keller and H. Ludwig. Defining and Monitoring Service Level Agreements for dynamic e-Business. In
A. Couch, editor, Proceedings of the 16th System Administration Conference (LISA’02), Philadelphia, PA, USA,
November 2002. The USENIX Association.

[8] Keynote – The Internet Performance Authority. http://www.keynote.com.

[9] H. Kreger. Web Services Conceptual Architecture 1.0. IBM Software Group, May 2001.

[10] L. Lewis. Managing Business and Service Networks. Kluwer Academic Publishers, 2001.

[11] L. Lewis and P. Ray. On the Migration from Enterprise Management to Integrated Service Level Management.
IEEE Network, 16(1):8–14, January 2002.

[12] H. Ludwig, A. Dan, R. Franck, A. Keller, and R.P. King. Web Service Level Agreement (WSLA) Language
Specification. IBM Corporation, July 2002.

[13] H. Ludwig, A. Keller, A. Dan, and R.P. King. A Service Level Agreement Language for dynamic electronic Ser-
vices. In M. Bichler, editor, Proceedings of the 4th International Workshop on Advanced Issues of E-Commerce
and Web-based Information Systems (WECWIS’02), Newport Beach, CA, USA, June 2002. IEEE Computer So-
ciety.

[14] S. Mazumdar. Inter-Domain Management between CORBA and SNMP. In Proceedings of the IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations & Management, L’Aquila, Italy, October 1996.

[15] N. Soukouti and U. Hollberg. Joint Inter-Domain Management: CORBA, CMIP and SNMP. In A. A. Lazar and
R. Saracco, editors, Proceedings of the 5th International IFIP/IEEE Symposium on Integrated Management (IM),
pages 153–164, San Diego, USA, May 1997.

[16] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman. Grid Service Specification. Draft 3,
Global Grid Forum, July 2002. http://www.gridforum.org/ogsi-wg/GS Spec draft03 2002-07-17.pdf.

[17] D. Verma. Supporting Service Level Agreements on IP Networks. Macmillan Technical Publishing, 1999.

[18] Y. Yemini, G. Goldszmidt, and S. Yemini. Network Management by Delegation. In I. Krishnan and W. Zimmer,
editors, Proceedings of the Second International Symposium on Integrated Network Management, pages 95–107.
Elsevier Science Publishers B. V. (North Holland), April 1991.

13

