
17/11/2002 Andreas Ulbrich 1

DotQoS – QoS in .NET
Integration of non-functional properties in .NET

Andreas Ulbrich, Torben Weis
Intelligent Networks and Management of Distributed Systems (iVS)
TU Berlin



17/11/2002 Andreas Ulbrich 2

Topics

Motivation and Objectives
DotQoS Inside
The Road Ahead



17/11/2002 Andreas Ulbrich 3

Quality of Service

Non-functional properties
Separation of concerns
Existing Approaches

Mostly built around CORBA (MAQS, OpenORB, Quo, 
TAO…)

Aspects, modified languages (QIDL, …)
Design, Implementation, Runtime



17/11/2002 Andreas Ulbrich 4

Objectives of DotQoS

Simple, useable
Runtime Adaptation 
Support multi-category QoS
Allow reuse of QoS mechanisms
Do we really want extended IDL or aspect languages?
Do not modify underlying middleware!
No real-time support!



17/11/2002 Andreas Ulbrich 5

The way it works

What do we need?

QoS Specification

QoS Negotiation

QoS Mechanisms
What do we use?

.NET Remoting

Highly reflective, custom meta-data

Flexible middleware (not really adaptive yet)

C ith d t t l



17/11/2002 Andreas Ulbrich 6

.NET Remoting



17/11/2002 Andreas Ulbrich 7

QoS Specification in DotQoS

A QoS category is defined by its contract scheme

Defines the QoS dimension that hold parameters of the 
QoS level

DotQoS

Classes derived from 
DotQoS.Contracts.QoSCategorySchemeBase

Dimensions are properties decorated with QoSDimension
attribute

Specialisation by inheritance
Highly reflective stuff



17/11/2002 Andreas Ulbrich 8

QoS Specification

public class Encryption : QoSCategorySchemeBase {

[QoSDimension(QoSDirection.Ascending, 
QoSUnit.Amount)]
public int KeyLength { 

get { return (int)this.Parameters[“KeyLength”]; }
set { this.Parameters[“KeyLength”] = value; }

}

}



17/11/2002 Andreas Ulbrich 9

Interfaces with QoS support

Need to declare interfaces to support QoS
Costum attribute QoSContractClass
QoS valid for all public methods of this interface

Including property accessors
Declaration only!!!

Does say nothing about the QoS mechanism to use.



17/11/2002 Andreas Ulbrich 10

Declaring QoS Support

[QoSContractClass(typeof(Encryption))]
public interface IFoo {

public void DoSomething() {...}
public int DoSomethingDifferent(int
whatever) {...}

}



17/11/2002 Andreas Ulbrich 11

Multicategory QoS

Multiple contracts
Interface inheritance
Objects support more than one QoS
Need compound contracts



17/11/2002 Andreas Ulbrich 12

Component Contract
Idea based on the concept of software components
Components have ports

Port provides an interface (functional contract)

Ports may have non-functional contracts, too (QoS)
Interfaces implemented by a class represent ports
QoS of a port

Union over all QoS on the interfaces in the ports inheritance hierarchy
Component contract maps ports to their QoS categories

Keep a mapping of methods to QoS at runtime



17/11/2002 Andreas Ulbrich 13

Plugging QoS into .NET Remoting

Contract negotiation
Contract enforcement
QoS mechanisms



17/11/2002 Andreas Ulbrich 14

QoS aware Components

All component impl. inherit from DotQoS.RemoteObject

Defines common QoS functions
All objects are context bound

Cross context invocations are QoS aware (even in-process)

Every component (i.e. object) executes within own context
Must be decorated with DotQoS.QoSContextAttribute

Defines the context to execute in



17/11/2002 Andreas Ulbrich 15

Negotiation

FrameContract for each client/server interaction

Contains component contract for the server component

Has a unique ID (actually a GUID)
Client can negotiate elements of component contract

Either in a defined order (i.e. security first) or entire 
component contract

Server throws exception if client wish is not acceptable
Contract scope must map to component

Server side: connection

Cli t id t t



17/11/2002 Andreas Ulbrich 16

Client Example

Foo foo = Activator.GetObject(...);

DotQoS.FrameContract fc = 
foo.CreateFrameContract(DotQoS.ContractServices.Default
Observer);

// specify required QoS level
Encryption encr = new Encryption();
encr.KeyLength = 1024;
encr.IsActive = true;
// configure elements of component contract
fc.ConfigureCategory(typeof(IFoo), encr);



17/11/2002 Andreas Ulbrich 17

QoS Enforcement

Contract ID (Guid) is passed with every message

Sinks take care of this
QoS mechanisms retrieve ID, fetch contract and do whatever is 

necessary



17/11/2002 Andreas Ulbrich 18

QoS Mechanisms

Request level vs. Message level
Must be adaptable (i.e. exchange them at runtime)
Build on existing concepts

Sink chains



17/11/2002 Andreas Ulbrich 19

QoS Mechanism

Default sinks that are always present

Request level: Object sinks (server side) and envoy sinks 
(client side)

• Requires objects to be context bound

Message level: Channel sinks, formatters

Inject contract IDs into message or message headers
Problem: Sink chains set once, then fixed

Won’t be adaptable

Solution: Sink loops (not really nice but work well)



17/11/2002 Andreas Ulbrich 20

Sink loops
Proxy Object

Object
Sink

Envoy
Sink

Client
Channel

Sink

Server
Channel

Sink

Mechanism
Sink Chain

Mechanism
Sink Chain

Mechanism
Channel

Sink Chain

Mechanism
Channel

Sink Chain

(Mechanism) Channel

1

4

2

3

7

5

6

8

9

10
11

12

13
14



17/11/2002 Andreas Ulbrich 21

Mapping Categories to Mechanisms
So far we have

Categories for QoS specification

Mechanisms to enforce categories a runtime
Configuration-information maps categories to mechanisms

May be application/component specific

Multiple mappings may exist
Mechanism installed at frame contract activation
Still under investigation

Combination of mechanisms for different categories

Selection of most suitable mechanism if more than one 

This slide was inserted 
after the talk in response 
to audience questions.



17/11/2002 Andreas Ulbrich 22

So far so good
We have

Flexible, adaptable infrastructure

QoS specification, negotiation, enforcement

Pure add-on (a couple of DLLs), No changes to .NET or 
Remoting!!!

No IDL and No Aspect language!
Still work on 

Safe combination of mechanisms

Resource management, policies, and runtime adaptation 

U ti d billi



17/11/2002 Andreas Ulbrich 23

Experience

Fun to work with .NET
VS.NET is very decent
Remoting is cool but does not always behave as expected

Contexts and related stuff is poorly documented

Current implementation is a bit of a hack

Need to read the source (SSICLI) to get things done

Conclusion: Some concepts are very cool but MS seemed to 
have worries about exposing them to the programmer.



17/11/2002 Andreas Ulbrich 24



17/11/2002 Andreas Ulbrich 25


