Dynamic Weaving with .net

Wolfgang Schult and Andreas Polze
Hasso-Plattner-Institute
14440 Potsdam, Germany
{schult|apolze}@informatik.hu-berlin.de

March 1, 2002

Abstract

Aspect-oriented programming (AOP) is a relatively
new approach for separation of concerns in software
development. AOP makes it possible to modularize
crosscutting aspects of a system. Like objects, aspects
may arise at any stage of the software lifecycle, in-
cluding requirements specification, design, implemen-
tation, configuration, and even runtime. Aspects of-
ten constrain the design space for a given software
component. Especially if multiple aspects are applied
to a component, this may have severe implications.
Components may be used in different contexts, may
be requiring emphasis on only a few of the aspects
considered during design and implementation. Some
aspects may impose contradicting requirements on a
component (e.g.; the fault-tolerance aspect may re-
quire replication of data, the security aspect may pro-
hibit it). Static interconnection of aspect code and
functional code (aspect weaving) often requires com-
promises with respect to generality of services pro-
vided by a component.

Within this paper we focus on dynamic manage-
ment of aspect-information at program runtime. We
introduce a new approach called ”dynamic weaving”
to interconnect aspect code and functional code. Us-
ing our approch, it is possible to decide at runtime
whether a component should be instantiated with sup-
port for a particular aspect or not. We have imple-
mented our approach in context of the language C#
and the .NET environment recently introduced by Mi-
crosoft.

1 Introduction

There exists a variety of application areas for Aspect-
Oriented Programming (AOP). Generally, it is very
acceptable to have a preprocessor-like aspect-weaver
to interconnect functional code and aspect code.
However, sometimes it is desirable to postpone the
decision whether aspect information is added to a
particular component until program runtime. For
instance, one may have a huge resource consuming
image processing algorithm located in a component,
and depending on system load and available comput-
ing nodes one may choose data distribution, mem-
ory allocation scheme, and utilization of computing
power at runtime. Perhaps you want to distribute
the calculations for better performance or you want
to optimize local memory usage. Both are cross-
cutting concerns, one may define an aspect which
distributes invocation of the components’ functions
calls and another aspect which optimizes local and
remote memory utilization during a distributed com-
putation. Figure 1 illustrates the situation for a dis-
tributed computation. Fagle gets a request for a ser-
vice in the component. Depending on its own utiliza-
tion, the decision is to delegate it to the neighbors
(Tomcat and Raptor), or to execute the service lo-
cally. However, in the case of the local computation,
no aspect information at all is needed. Emphasis is
rather on service execution with as little overhead as
possible.

The same with our second aspect. If we do not
want to restrict memory usage, we do not need any

Raptor

Call function

Figure 1: Distributing Calculations

overhead. At this point, our example identifies a
weakness of traditional approaches to aspect oriented
programming. Typically, one has to decide at compile
time decide whether an aspect should be interwoven
with a component or not. At the runtime you neither
can ’switch off” your aspect nor interweave another
aspect with the component.

Within this paper, we present a solution to this
problem and show one can interweave previously de-
fined aspects with functional components code dy-
namically, during the runtime. This 'Dynamic Weav-
ing’ is promising because of its flexibility: neither
at design nor at compilation time a definite decision
whether a particular aspect should be reflected in a
component has to be made. You can define aspects
specialized for a particular situation and interweave
them if they are needed. Furthermore one can pa-
rameterize the aspects during the runtime. And we
will discuss that all is done without the need of any
tool or language support.

The remainder of the paper is organized as follows:
Section 2 presents related work. Section 3 describes
the dynamic weaving. In Section 4 we demonstrate

a simple case study with the sample described above
and finally, Section 5 summarizes our conclusions.

2 Related Work

The concept of aspect-oriented programming (AOP)
offers an interesting alternative for specification of
non-functional component properties (such as fault-
tolerance properties or timing behavior). There ex-
ists a variety of language extensions with AspectJ [8],
which is a Java extension as a most prominent exam-
ple. The central concept of most AOP-frameworks is
a joinpoint model described in [9].

Dynamic joinpoints are an extension of the original
AOP model to allow dealing with dynamic informa-
tions during the runtime [5]. A dynamic joinpoint
allows to define conditions wich are compared during
the runtime. Depending on the result the code will
executed or not.

Mehmet Aksit has developed the composition fil-
ters object model, wich provides control over mes-
sages recived and sent by an object wich provides
control over messages recived and sent by an object
[1]. In their work, the component language follows
traditional object-oriented programming techniques,
the composition filters mechanism provides an aspect
language that can be used to control a number of as-
pects including syncronization and communication.
Most of the weaving happens runtime.

3 Dynamic Weaving

Dynamic weaving means that a component (a tar-
get class) and an aspect class will become interwoven
during the runtime. There is no need for the aspect
class to know something about the target class and
vice versa. To understand how the weaving process
works, we have to define some notions.

3.1 What is an Aspect Class?

An aspect describes crosscutting concerns. In our
case an aspect is a simple class derived from Aspect.
We will call it aspect class. One can define methods,
properties, and members as well. In every case an

aspect class works in conjunction with another in-
stance of a class (the target class). This means, that
it makes no sense to instanciate an aspect class alone.
You have to instanciate it together with a class. This
process is called weaving. We will describe it later in
this section.

3.2 Connection Points

As we said an AspectClass works only in conjunction
with another instance of a class. At a connection
point both will become interwoven. At this time we
want only define a method as a connection point. To
do this, you simply write the call attribute above
the method definition in your aspect class. The call
attribute is defined as follows:

[call (Invoke InvokeOrder{, Alias=AliasName})]

If you interweave a class (target class) with an As-
pectClass each connection point will become interwo-
ven with a target class method if:

1. The method names and the signature are the
same

2. If there is an AliasName defined and the method
name from the target class is the same like the
alias and - the signature of both are the same

3. If there is an AliasName and the alias contains
a wildcard at the end, or the signature of the
Aspect class method contains wildcards and the
target method fit.

In any case, if a function is interwoven with a
connection point. Point 1 is easy, if one define a
method:
[call(Invoke.Instead)]

void mymethod(int i) { /x ..

x/ }

then every method mymethod with one int as
parameter and void as result will interweave with
this method. Now, point 2 is if one defines
Alias="myspecialmethod” on this method, only
methods named myspecialmethod with an int pa-
rameter and a void return value will become inter-
wovern.

And the last point is if one modifies the alias
to Alias="my*” every method beginning with
"my” and the same parameters will become involved.

Furthermore one can use signature wildcards. A
wildcard for the result type is object, and for the
parameters params object[]. This is like a method
with variable arguments. But in every case you have
to define an alias. If not params object[] will not
be handled as wildcard. I.e. the following connection
point:

[call(Invoke.Instead, Alias="x")]

object catchall (params object[] args)

will become interwoven with every method in the tar-
get class and args will contain each parameter, you
pass through the function. For instance, if the target
class has a method void f(int i, double d), then
args[0] will contain i and args/1] will contain d after
the function is called.

We have seen when a connection point will inter-
weave, now focus on how we interweave. This is de-
scribed by the InvokeOrder parameter of the call at-
tribute. There are three possibilities:

e Invoke.Before: The aspect function of the con-
nection point will invoke before the object func-
tion will call.

e Invoke.After: As to be expected, the aspect
function will invoke after the object function has
already called.

e Invoke.Instead: The object function will not
call automatically. The aspect function has to
do it.

The first case is useful if you want to trace method
calls only. If you need to change the return value of
the method, you should choose the second case. To
get full control over the method, you need the last.

3.3 Aspect Context

In the case that you define an Invoke.Instead
connection point, you need a mechanism to call the
appropriate target class method. The problem is that
you know neither the type of the target class (your
aspect can become interwoven with any type) nor, in
some cases, the signature of the called method (this
is when you use signature wildcards). The solution
is to define an Context property in the Aspect base
class. With this property you get an object of type

AspectContext wich has the needed informations.
We define two methods:

public object Invoke (params object[] parameters)

public object InvokeOn(object target, params
object[] parameters)

The first simply invokes the target class method with
the given parameters. With the second, one can in-
voke one’s own instance (target) of the target class.
This is useful if you have special instances of the tar-
get class stored in your aspect, and you want to in-
voke these.

3.4 Implementation Issues

In the sections above we learned what an aspect class
is, how we define connection points, and what object
context means. The question is how to implement, it.
We need a language which has the following require-
ments:

e a way to define attributes

e reflection and retrospection to analyse the target
class and the aspect class signature (this means
methods and method parameters)

e last, but not least, a possibility to emit the in-
terwoven class

We implemented our solution in Microsoft .NET be-
cause it fullfills all these requirements. MS .NET is a
framework like Java wich provides a runtime enviro-
ment to run a system independent code. This code is
present in an intermediate language (IL). Unlike java,
NET has the capability of working with a variety of
languages. So we have the big advantage that we get
the ability to interweave an aspect written in C++,
with a component written in pascal.

Now our solution is a library for .NET. This library
provides several classes and attributes defined in the
namespace Aspects:

e Aspect is the base class for all defined aspects

e Weaver is a class wich includes the weaving
functionality

e Call is an attribute to define connection points.

N ¢

CreateWeavedInstance

¢
)

Figure 2: The Weaving Process

Weaved Type
v

Connection Points

e AspectContext accessible via the As-

pect.Instance, to invoke instance methods.

3.5 Dynamic vs. Static Weaving

Most aspect frameworks use a compiler (aspect
weaver) approach. This is fine as long as all system
parameters are well known at compile time. Dynamic
weaving describes a process where a class will become
interwoven with an aspect class during the runtime.

3.6 The Dynamic Aspect Weaver

As described above, the Aspects namespace
contains a class called Weaver. It provides two
functions with which to interweave an AspectClass
with a specified class:
static object Weaver.CreateWeavedInstance (

Type classtype,

Aspect aspect,

params object[] parameters)

static object Weaver.CreatelInstance (
Type classtype,
params object[] parameters)

The first function generates an instance of a class
classtype. In aspect you have to commit an instance
of your AspectClass, parameters are the constuctor
parameters for the target class. A possible call would
be:

A a=Weaver.CreateWeavedInstance (typeof (A), new
MyAspect (), ...) as A;

In the second function there is no aspect. This

is when you define the aspect as attribute. The

following lines have the same meaning as the sample

above:

[MyAspect]

class A

{ /fx...%x/ %

Y I V4

A a=Weaver.CreateWeavedInstance (typeof (A), ...)
as A;

The first way is more flexible. One can determine
the Aspect and its parameters during runtime. First
the weaver looks for a custom attribute derived
from Aspect. If there is no aspect, the call is
the same as new A([parameters]). Otherwise,
CreateWeavedInstance with this aspect, will be
called. What happens during the creation is
illustrated in figure 2. The weaver looks for
connection points and tries to join them with
the target class as described above. With this
information, it builds a new type, and creates a
new instance of this type. At the end the method
Aspect.ctor will called. This method is overridable
an has the following form:

virtual void ctor(Type classtype, object

target , params object[] args)

e classtype is the type of the target class
e target is the new interwoven instance

e args are the constructor parameters

After that, the newly built instance will be returned
to the caller.

4 An Example

Going back to the situation in our introduction,
listing 1 shows a class which calculates a Mandelbrot.
This is an image processing algorithm developed by
Benoit Mandelbrot [12]. The input for the algorithm
is a filename, a bounding box, and the resolution.
public class Mandelbrot
{

const int m_iLimit=255; // calculation limit

public Mandelbrot(){}

CX

Calculate(...) CY

—

Memory Hard disk

Figure 3: Mandelbrot Function Call

// this method calculates the mandelbrot and returns the
// result in matriz
private void InternalCalculate(double x1, double yl, double
dAddx, double dAddy, int line, ref Byte[] matrix)
{
int iPos=0;
while(iPos<matrix.Length)
{
double dCr=x1;
for(int iPosLine=0;iPosLine<line;iPosLine++)

{

Byte c=0;

double
dZr = 0.0, // real component of Z
dzi = 0.0, // imaginary component of Z
dZiSqr = 0.0, // Zi squared
dZrSqr = 0.0, // Zr squared
dZri; // temporary holder for Zr

while (¢ < m_iLimit && dZiSqr + dZrSqr < 4)
{
dZrl = dZrSqr - dZiSqr + dCr;
dZi = 2 * dZr * dZi + yl;
dZr = dZri;
dZiSqr = dZi * dZi;
dZrSqr = dZr * dZr;
++c;
}
if (¢ >= m_ilimit)
matrix[iPos]=0;
else
matrix[iPos]=c;

dCr+=dAddx;
iPos++;
}
yl+=dAddy;
}
}
// only this method is accessible from outside
// It calls the InternalCalculate function and
// stores the result to the hard disk
public virtual void Calculate(string filename, double x1,
double y1, double x2, double y2, int cx, int cy)
{
double dAddx=(x2-x1)/((double)cx);
double dAddy=(y2-y1)/((double)cy);
// memory allocation and calculate
Byte[] matrix=new Bytel[cy*cx];
Calculate(x1,yl,dAddx,dAddy,xRes,ref matrix);
// store the result

FileStream fs=new FileStream(filename, FileMode.Create,
FileAccess.Write);
fs.Write(matrix,0,matrix.Length);
fs.Close();
}
}

Listing 1: The Mandelbrot Class

Figure 3 shows what happens: The algorithm first
calculates the whole mandel set in memory and then
it stores it to the hard disk. For small resolutions
this algorithm works well. But what happens if we
increase the resolution? The amount of consuming
memory will increase exponential (We need cz*cy
memory storage). A possible solution is to rewrite
the algorithm. Under certain circumstances, we don’t
have the possibility to do that (i.e. we have the algo-
rithm only as binary), so we need another solution.

4.1

We split the function calls so that only single lines

will be written to the hard disk. After that we can
join these files together to the requested file. Figure 2

shows this approach. This can be done by an aspect,
class (we want to leave it transperent to the client).
Listing 2 shows a possible implementation of this
aspect.

The Save Memory Aspect

Calculate(...) CX

1 Calculate(...) 1 I ITT T[]

Memory \
2¢Calculate(...) 1 [T TTTTTTT]
Memory ;:

cy" Calculate(...) 1 [TTTITTTTT]

Memory Hard disk

Figure 4: Function Call with the SaveMemory Aspect

public class SaveMemory:Aspect
{
[Call(Invoke.Instead)] // connection point
public void Calculate(string filename, double x1, double y1
, double x2, double y2, int xRes, int yRes)
{
// split up in lines
double dStep=(y2-y1)/((double)yRes);
for(int i=0;i<yRes;i++)

// call original function
Context.Invoke(filename+i.ToString(),x1,y1,x2,y1,xRes,1)

yl+=dStep;

}

// join the files together

Byte[] data=new Byte[xRes];

FileStream fsdst=new FileStream(filename, FileMode.Create

, FileAccess.lWrite);

for(int i=0;i<yRes;i++)

{
FileStream fssrc=new FileStream(filename+i.ToString(),

FileMode.Open, FileAccess.Read);

fssrc.Read(data,0,data.Length);
fssrc.Close();
fsdst.Write(data,0,data.Length);

}

fsdst.Close();

}
}

Listing 2: The Save Memory Aspect

As you see in the aspect class the function calculate is
defined as a connection point. As described in Section
3, if the target class contains a function Calculate
with the same signature (and in this case it has) then
both will become interwoven. The for loop simply
invokes via the Aspect Context our algorithm line by
line. For n lines it will generate n files on the hard
disk. At the end, these n files will become joined to
a new file which was originally requested.

4.2 The Distributing Aspect

Our second goal was to distribute the function calls
on several computers. For that problem too, one can
define an aspect. Figure 5 shows what we have to do:
On every function call we split the calculation up
and delegate each part to our computers Fagle and
Tomcat!. Both write the result to central location (a
file Server). The aspect class now gets the result files
and joins them together. Listing 3 shows an extract.

public class Distributing:Aspect

{
// instances on remote computers
private object eagle;
private object tomcat;

public override void ctor(Type typ, object o, params object
[1 args)

/* Create remote instances for Eagle and Tomcat */
}
// the connection point
[Call(Invoke.Instead, Alias="Calculate")]
public void Distributing(string filename, double x1, double
y1, double x2, double y2, int xRes, int yRes)

LAt this Point both computers are hard coded in our aspect
class. But it is easy to extend the algorithm to more comput-
ers, and dynamic assigned computers. We only want to show
the principle.

cy, Loy,

InvokeOn(Rapta})
- InvokeOn(Tomcat)
Falcon hard disk : distributed file system

Figure 5: Function Call with the Distributing Aspect

// calculate boundaries for both computers
int yRes2=yRes/2;
double yStep=(y2-y1)/((double)yRes);
double yl2=yl+yStep*yRes2;
double y21=y12+yStep;
// Prepare event for async call
AutoResetEvent ev=new AutoResetEvent(false);
workcount=2;
// Queue function calls
System.Threading.ThreadPool.QueueUserWorkItem(
new WaitCallback(Distributing.Calculate),
new WorkItem(this, ev, eagle,temppath+"/eagle.raw",x1,yl
,x2,y12,xRes,yRes2));
System.Threading.ThreadPool.QueueUserWorkItem(
new WaitCallback(Distributing.Claculate),
new WorkItem(this, ev, tomcat,temppath+"/tomcat.raw",x1,
y21,x2,y2,xRes,yRes-yRes2));
// wait until ready
while (workcount!=0) ev.WaitOne();
// join files together
FileStream fsdst=new FileStream(filename, FileMode.Create
, FileAccess.Write);
Copy (temppath+"/eagle.raw",fsdst,xRes,yRes2);
Copy (temppath+"/tomcat.raw",fsdst,xRes,yRes-yRes2);
fsdst.Close();

}

Jx ox/

public static void Calculate(object para)
{

WorkItem item=(WorkItem)para;

item.aspect.Context.InvokeOn(item.target, item.filename,
item.x1, item.yl, item.x2, item.y2, item.xRes, item.
yRes);

// ready

item.aspect.workcount--;

item.readyevent.Set();

}
}

Listing 3: The Distributing Aspect

Our aspect class contains three important functions.
The first is ctor, which will be called from the Weaver
when the instance is created. We use it to create fur-

ther instances of the same type on which we can dis-
tribute the function calls. The second is Distribut-
ing. This method contains the call attribute, which
defines it as connection point as well. Here we dis-
tribute the function calls to the instances at the com-
puters tomcat and eagle. For that we generate a pre-
viously defined WorkItem and put it in a thread
pool. The asynchronous callback will happen in Cal-
culate where we invoke the target class.

4.3 The Client Side

In the client only the instantiation of the Mandelbrot
class changes. Depending on our needs we weave one

of the both aspects to our class (Listing 4).
Mandelbrot mb;
// we need less memory usage
if (opt_memory.Checked)
mb=Aspects.Weaver.CreateWeavedInstance(typeof (Mandelbrot),
new SaveMemory()) as Mandelbrot;
// we more performance
else if(opt_speed.Checked)
mb=Aspects.Weaver.CreateWeavedInstance(typeof (Mandelbrot),
new Distributing("d:/temp")) as Mandelbrot;
// we need nothing of both
else mb=new Mandelbrot();

Listing 4: The Client Side

The function call itself are the same.

5 Conclusions

Aspect-oriented programming (AOP) is a relatively
new approach for separation of concerns in software
development. AOP makes it possible to modularize
crWithin this paper we focus on dynamic manage-
ment of aspect-information at program runtime. We
introduce a new approach called ”dynamic weaving”
to interconnect aspect code and functional code. Us-
ing our approch, it is possible to decide at runtime
whether a component should be instantiated with
support for a particular aspect or not. We have im-
plemented our approach in context of the language
C# and the .NET environment recently introduced
by Microsoft.osscutting aspects of a system. Gener-
ally, it is very acceptable to have a preprocessor-like
aspect-weaver to interconnect functional code and
aspect code. However, sometimes it is desirable to
postpone the decision whether aspect information is

added to a particular component until program run-
time. Within this paper we focus on dynamic man-
agement of aspect-information at program runtime.
We introduce a new approach called ”dynamic weav-
ing” to interconnect aspect code and functional code.
Using our approch, it is possible to decide at run-
time whether a component should be instantiated
with support for a particular aspect or not. We
have implemented our approach in context of the
language C# and the .NET environment recently
introduced by Microsoft. Within this paper have
presented our approach to dynamic management of
aspect-information at program runtime. We have in-
troduced a new approach called ”dynamic weaving”
which allows for late binding (weaving) of aspect code
and functional code. Using our approch, it is possible
to decide at runtime whether a component should be
instantiated with support for a particular aspect or
not. We have implemented our approach in context
of the language C# and the .NET environment re-
cently introduWithin this paper we focus on dynamic
management of aspect-information at program run-
time. We introduce a new approach called ”dynamic
weaving” to interconnect aspect code and functional
code. Using our approch, it is possible to decide at
runtime whether a component should be instantiated
with support for a particular aspect or not. We have
implemented our approach in context of the language
C# and the .NET environment recently introduced
by Microsoft.ced by Microsoft. Relying on the .NET
support for a variety of programming languages, our
approach is not restricted to C# but works for all of
the .NET languages.

Our current implementation has puts some con-
straints on the programmer of a component. Cur-
rently, only virtual methods can be interwoven dy-
namically. The reason is our implementation of late
binding of the function calls. Currently the Weaver
"overrides” the function so that the virtual method
table maintained inside the .NET virtual machine
points to the woven function (the version enriched
with aspect information). Other members of a class,
such as fields, properties, static, and class functions
currently cannot be accessed this way. However, we
are working on a solution to lift this restriction.

References

[1] Mehmet Aksit, Bedir Tekinerdogan, ”Aspect-
Oriented Programming Using Composition-
Filters”, ECOOP Workshops 1998: 435.

[2] T. Archer, ”Inside Microsoft C#”, ISBN 0-7356-
1288-9, Microsoft Press.

[3] Aspect] Hompage, http://www.aspectj.org/,

2002

[4] ”Common Language Infrastructure”, Microsoft,
Internal Working Document,.

[5] Kris Gybels, ”Using a logic language to ex-
press cross-cutting through dynamic joinpoints”,
In proceedings of Second Workshop on Aspect-
Oriented Software Development, Bonn, Febru-
ary 21-22, 2002.

[6] S. Hanenberg, Rainer Unland, ” A Proposal For
Classifying Tangeled Code”, In proceedings of
Second Workshop on Aspect-Oriented Software
Development, Bonn, February 21-22, 2002.

[7] S. Hanenberg, R. Unland, ”Concerning AOP
and Inheritance”, Dept. of Mathematics and
Computer Science University of Essen.

[8] Gregor Kiczales, John Lamping, Anurag Mend-
hekar, Chris Maeda, Christina Videira Lopes,
Jean-Marc Loingtier, John Irwin, ”Aspect Ori-
ented Programming”, In proceedings of the
European Conference on Object-Oriented Pro-
gramming (ECOOP), Finnland, Springer Verlag
LNCS 1241; June 1997.

[9] G.Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, W. G. Griswold, ” Getting Started with
AspectJ”, Communications of the ACM, Vol. 44,
Issue 10, October 2001, pp. 59-65.

[10] K.Lieberherr, D. Orleans, J. Ovlinger; ” Aspect-
Oriented Programming with Adaptive Meth-
ods”, Communications of the ACM, Vol. 44, TIs-

sue 10, Oktober 2001, pp. 39-41

C. V. Lopes, G. Kiczales, "Recent, Developments
in AspectJ”, Xerox Palo Alto Research Center.

[11]

[12] B. Mandelbrot, ”The Fractal Geometry of Na-
ture”, San Francisco: Freeman, 1982.

[13] M. Pietrek, http://msdn.microsoft.com/ msdn-
mag/issues/1000/metadata/metadata.asp.

[14] J. Richter, D. Box, several articles about .NET;
SYSTEM-Journal 02/2001 to 05/2001, redtec
publishing, Unterschleiheim, Germany.

[15] Workshop ”Microsoft .net Crash Course for
Faculty and PhDs”, Microsoft Research, Cam-
bridge, England, September 3-6, 2001.

