
Scheduling Transient Overload 
with the TAFT Scheduler
M. Gergeleit, E. Nett

Institute for Distributed Systems (IVS)
Otto-von-Guericke Universität Magdeburg
{gergeleit, nett}@ivs.cs.uni-magdeburg.de



Overview
� Motivation
� Concepts of the TAFT-Scheduler
� Scheduling-Policy for TAFT
� Implementation on RTLinux
� Evaluation
� Summary



Application: 
Distributed Sensor Fusion (1)

� In a team of 
RoboCup 
robots

� Fusion of
Laser-Scanner
Data

� Fusion at
different
Levels



Application: 
Distributed Sensor Fusion (2)
� Problems:

� Execution time of each filter module 
depends on unpredictable 
complexity of the scene

� WCET much too large but actually 
never reached 

� Variable other workload on the 
robots (overload)

� Global deadline for the results of the 
fusion process

� Load Distribution
Scanner
Robot 1

Scanner
Robot 2

Virt. Global
Map Sensor

Shape 
Filter

Element 
Filter

Object 
Filter

Virt. Global
Map Sensor

Fusion



Approach
� If possible use of Anytime-Algorithms
� Local encapsulation of the unpredictability

� By the use of adequate scheduling scheduling



Idea of TAFT-Scheduling
� Handling of tasks with unknown or too pessimistic 

WCETs
� Introduction of Expected Case Execution Time (ECET)

� Still with timing guarantees
� Scheduled exception handling before the deadline 

� Fault-tolerance with respect to timing errors
� Graceful degradation in overload situations
� Tradeoff between functionality and timing



TAFT Scheduling
� Each Task consists of a MainPart and an 

ExceptionPart
� MainPart

� real-time computation with expected execution times (ECET)
� best effort approach, from no guarantee to total guarantee

� ExceptionPart
� provides exception handling before the deadline

� prevention of domino effect, fail-safe and consistent behavior

� guaranteed execution by reserving its WCET

time

MainPart ExPart deadline



ECET – Expected Case 
Execution Time
� ECETt,p of task-instance t of task ττττ with probability p

�CPU-time required to complete task-instance t with probability p
�p-quantile of the probabilistic density function of T’s execution 

time

� ECETt,k,n - The minimal execution time that was 
needed to successfully complete at least k out of the 
last n most recent executions of ττττ before t.
�A statistic quantity

N
um

be
r o

f E
xe

cu
tio

ns

Execution Time

ECET



TaskPair Programming
void Procedure_TP (struct taskpair TP){

if(guarantee (TP.T, TP.D, TP.C, TP.E)){
while (1) {

pthread_wait_np_ex();
TP_SAFE_REGION

BEGIN_MAIN_PART
MP();

END_MAIN_PART

BEGIN_EXCEPTION_PART
EP();

END_EXCEPTION_PART
}

}



Scheduling Strategy
� Two-level Scheduling

� Level One – ExceptionParts
� Highest dispatching priorities
� LRT (Latest Release Time - Reverse-EDF)
� Tries to do everything as late as possible

� Level Two - MainParts
� Lower dispatching priorities
� EDF
� Tries to do everything as soon as possible

time

MainPart ExPart deadline



Acceptance Test
� Harmonic task set:

� A task set of TPs 
∏ = {τ i = (Ti, Di, Ci, Ei), i = 1 to n} 
ordered by crescent deadlines is schedulable with the TAFT scheduler 
(level 1: EPs with LRT, level 2: MPs with EDF)
if the Maximum Utilization Factor Ωi ≤ 1 for each τ i.

� Similar condition to EDF or LRT

∑∑
≤<=

+
+

=Ω
nji

j
i

i

j j

jj
i E

TT
EC 1

1



Implementation (1)
� Implemented in RTLinux V3.0
� Changes in the original scheduler:

� support the two-level scheduler
� LRT for EPs and EDF for MPs

� mechanism for triggering deadlines and handling exceptions
� execution times account
� task acceptance condition

� Available for download at: 
http://mosel.cs.uni-magdeburg.de/taft/index.html



Implementation (2)
� Monitored by a RTLinux-Version of MagicZoom

EP Activation:



Experiments (1)

� Conducted experiment: Hartstone Benchmark
� 5 periodic tasks
� Harmonic and non-harmonic series

 PH Series PN Series 

Task ID Frequency (F) Execution time (ET) Frequency (F) Execution time (ET) 

0 1 Hz 160,00 ms 2 Hz 80,00 ms 

1 2 Hz 80,00 ms 3 Hz 53,28 ms 

2 4 Hz 40,00 ms 5 Hz 32,00 ms 

3 8 Hz 20,00 ms 7 Hz 22,85 ms 

4 16 Hz 10,00 ms 11 Hz 14,54 ms 

 



Experiments (2)
� Used timing distributions

� Beta and Uniform PDF

ETMP(i) = beta(2, 3) [WCETMP(i) * 0.5, WCETMP(i)] or
ET’MP(i) = uniform [WCETMP(i) * 0.5, WCETMP(i)]
Ci = αααα-quantile of ETMP(i)

Ei = WCETMP(i) * 0.05

αααα-quantile



Results
� EDF in a transient overload situation:

 
Beta.noHarm (EDF) 

0,00 

0,20 

0,40 

0,60 

0,80 

1,00 

1,20 

0,842 0,955 1,051 1,184 1,289 
% U 

% 
DL 
miss 

T0 
T1 
T2 
T3 
T4 



Results
� TAFT in transient overload situation:

Beta.noHarmonic

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0,842 0,954 1,063 1,184 1,29

% U

%
 E

P

T0 .90q
T1 .90q
T2 .90q
T3 .90q
T4 .90q



Results
� TAFT with different αααα-quantiles in transient overload 

situations:

Beta.noHarmonic

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,842 0,954 1,063 1,184 1,29

% U

%
 E

P

T0 .99q
T1 .99q
T2 .50q
T3 .50q
T4 .50q



Summary
� TAFT-Scheduling

� Can be used to handle unpredictability (incl. overload) in a 
fault-tolerant manner

� Can be implemented using a combination of EDF-scheduling
schemes

� Has been implemented on RTLinux
� Has been used to implement sensor-fusion of laser-scanners

in a RoboCup scenario


