
Iterative Dependable Systems Engineering
with Fail*

Horst Schirmeier, Technische Universität Dortmund,
Embedded System Software Group

Recent studies suggest that future microprocessors need low-cost fault-tolerance solutions for
reliable operation. The DFG rates this problem so important that they are funding a Priority
Program – SPP 1500 “Dependable Embedded Systems” – to investigate solutions and tradeoffs
on both software and hardware layers.

On the software side, several competing error detection and correction methods have been shown
to increase the overall resiliency when applied to critical spots in the system. Some projects harden
the OS kernel against soft errors, e.g., our DanceOS project uses Aspect-Oriented Programming
and Generic Object Protection in eCos. Others extend the OS by dependability services, e.g.,
Döbel’s Romain adding transparent replication to Fiasco.OC, or Heinig’s FAME microvisor
collecting hardware-detected errors and dispatching them to application-specific handlers. The
authors of these works share two common problems:

• How can we identify the critical spots in our system that are particularly susceptible to
certain types of hardware faults? Hence, which parts of our system should get a high priority
for protection measures, as their resiliency has the largest impact on the whole system?

• How can we systematically test the functionality of our fault-tolerance measures, and how
can we quantify their effectiveness? Does our fault-tolerance measure increase the overall
fault resiliency, or does the increased contact surface (in terms of usedmemory, and executed
instructions) diminish the gains?

In this talk I will present our fault-injection and dependability-analysis framework Fail* that aims
at solving both problems: On the one hand, the tool allows to identify particularly vulnerable code
sections, important variables, data types, or program phases. On the other hand, it can be used for
systematic testing, and to quantify and compare the effectiveness of fault-tolerance measures.
Compared to the competition in the field, Fail* features excellent scalability (allowing to

analyze large software stacks, such as complex OS setups) by massive parallelization and smart
experiment-eliding techniques that minimize result inaccuracies. Additionally, the tool offers a
strong flexibility regarding experiment setups, fault models, and target systems: Fail* can be used
to analyze workloads running on different architectures and in several different simulator (e.g.,
Bochs/i386, gem5/ARM) and hardware (e.g., PandaBoard/ARM, Lauterbach/ARM) backends,
assuming single- or multi-bit faults in, e.g., RAM or the register file. I will accompany the talk with
concrete analysis examples, i.a., from a protected variant of eCos, and from an AN-encoded voter
providing the core of a triple-modular-redundantly executed quadrocopter control application.


