
GI-Fachgruppentreffen 2013 - Proposed Talk:

SimuBoost: Scalable Parallelization of
Functional System Simulation

Marc Rittinghaus Konrad Miller Marius Hillenbrand Frank Bellosa
System Architecture Group

Karlsruhe Institute of
Technology (KIT)

firstName.lastName@kit.edu

Full system simulation allows simulating an entire physical
machine on top of a host operating system (OS) and thus pro-
vides a powerful foundation to study the runtime behavior
and interaction of computer architecture, operating systems
and applications [1, 7, 11]. Since the entire execution envi-
ronment in such a system is virtual, every operation carried
out can be inspected easily. In contrast to the instrumen-
tation of applications or the OS, analysis with a simulator
does not influence the simulated machine’s state and thus
can be arbitrarily complex in time and space without dis-
torting measurements. The focus of functional simulation
lies in preserving the functional correctness of the executed
target system. Detailed processor- and device state models
are not subject to functional simulation.

A well-known limitation of full system simulation is the
low execution speed offered by current simulators. The
slowdown incurred by functional simulation compared to
hardware-assisted virtualization is significant (31x-810x on
average). That quickly renders functional simulation im-
practical for long-running workloads (e.g., 50 days for SPEC
CPU2006). Moreover, the execution time is very sensitive
to additional overhead caused by analysis logic. Represen-
tative sampling [8] can reduce the run-time overhead by lim-
iting complex analyses to short time frames that are rep-
resentative for the analyzed workload. However, an initial
functional simulation to identify such intervals is still needed
and the accuracy achievable with this technique also heav-
ily depends on sufficient phase behavior in the workload,
which is not always present [10]. Moreover, in some scenar-
ios (e.g., analysis of memory duplication) limiting the obser-
vation window is not an option. An acceleration technique
to enable full-length analyses of long-running workloads is
thus desirable.

Contribution. SimuBoost strives to close the performance
gap between virtualization and functional simulation to make
inspecting the full run-time feasible even for long-running
workloads. The core idea is to run the workload that is to
be inspected in a virtual machine (VM) managed by a hyper-
visor such as KVM [4]. At regular intervals the hypervisor
takes a snapshot of the full system state (i.e., memory con-
tent, device states, HDD data, etc.). The checkpoints then
serve as starting points for simulations, enabling to simu-
late and analyze each interval simultaneously in one job per

Virtualizationi[k] i[n]i[1]
vCPU

Node 0

Node 1

Node k

Node n Simulationi[n]

Simulationi[k]

Simulationi[1]

Figure 1: The workload is executed with virtualiza-
tion. Checkpoints at the interval boundaries serve
as starting points for parallel simulations.

interval. By transferring jobs to multiple nodes (i.e., CPU
cores, hosts, etc.), a parallelized and distributed simulation
of the target workload can be achieved. Although each simu-
lation is delayed up to the point when the respective interval
is reached in the virtualization stage, the execution speed
difference between virtualization and functional simulation
enables a parallelization of the simulation, thereby reducing
the overall simulation time (see Figure 1).

The benefit of taking this approach as foundation lies in the
fact that it scales with the run-time of the simulation: the
longer the simulation (including analysis) takes, the more
intervals can be extracted and the higher is the degree of
parallelization. Opposed to approaches that map simulated
CPU cores in a multi-core simulation to real parallelism in
the host [2, 5, 9, 12], splitting the simulation into intervals
does not limit the degree of parallelization to the number
of simulated cores. This way our method is applicable even
to single-core simulations. Moreover, since the intervals can
be processed independently, it allows distributing the simu-
lation workload across multiple hosts. To match the number
of intervals to the available hardware resources the interval
length needs to be chosen accordingly.

Results. As we are still working on the implementation of
SimuBoost, we cannot provide empirical results, yet. In-
stead we developed a formal model to describe the speedup
and scalability characteristics. SimuBoost can speed up con-
ventional simulation in a realistic scenario (parameter-wise)
by a factor of 84, while delivering a parallelization efficiency
of 94% according to the model.



Related Work. The division of simulation time employed
by our approach has already been proposed for accelerat-
ing micro-architectural simulation. Nguyen at al. proposed
to use trace-driven simulation and to split the trace into
separate time intervals that–in a second step–can be simu-
lated in more detail simultaneously [6]. To generate the un-
derlying instruction trace a preceding recording phase with
functional simulation is utilized. Equally targeted at micro-
architectural simulation, DiST [3] enhances the approach by
providing a robust method to cope with the necessary model
warm-up phase at the interval beginnings. SimuBoost differs
from these works in that it accelerates functional simulation,
the mode that is used by all other approaches to generate
checkpoints or traces. SimuBoost thus has to cope with new
challenges, foremost the non-determinism in the execution
with hardware-assisted virtualization.

Talk. The proposed talk will cover the concept behind Simu-
Boost and provide a more detailed insight into the chal-
lenges regarding non-deterministic machine execution that
arise when basing functional simulation on checkpoints gen-
erated by hardware-assisted virtualization. It will further
point out current limitations of SimuBoost and give an out-
look on future research directions.

1. REFERENCES
[1] L. Albertsson et al. Using complete system simulation

for temporal debugging of general purpose operating
systems and workloads. MASCOT, 2000.

[2] J. Ding et al. Pqemu: A parallel system emulator
based on qemu. ICPADS. IEEE, 2011.

[3] S. Girbal et al. Dist: A simple, reliable and scalable
method to significantly reduce processor architecture
simulation time. volume 31. ACM, 2003.

[4] A. Kivity et al. kvm: the linux virtual machine
monitor. volume 1. Linux Symposium, 2007.

[5] R. Lantz. Fast functional simulation with parallel
embra. Citeseer, 2008.

[6] A. Nguyen et al. Accuracy and speed-up of parallel
trace-driven architectural simulation. IPPS. IEEE,
1997.

[7] M. Rosenblum et al. Using the simos machine
simulator to study complex computer systems.
TOMACS, 7(1), 1997.

[8] T. Sherwood et al. Automatically characterizing large
scale program behavior. volume 30. ACM, 2002.

[9] K. Wang et al. Parallelization of ibm mambo system
simulator in functional modes. SIGOPS, 42(1), 2008.

[10] V. Weaver et al. Using dynamic binary
instrumentation to generate multi-platform simpoints:
Methodology and accuracy. HiPEAC, 2008.

[11] C. Won et al. A detailed performance analysis of
udp/ip, tcp/ip, and m-via network protocols using
linux/simos. High Speed Networks, 13(3), 2004.

[12] H. Zeng et al. Mptlsim: A cycle-accurate, full-system
simulator for x86-64 multicore architectures with
coherent caches. SIGARCH, 37(2), 2009.


