
GI-Fachgruppentreffen 2013 - Proposed Talk:

XLH: More effective memory deduplication scanners
through cross-layer hints

Konrad Miller Fabian Franz
Marc Rittinghaus Marius Hillenbrand Frank Bellosa

Karlsruhe Institute of Technology (KIT)

In cloud computing, virtual machines (VMs) permit the
flexible allocation and migration of services as well as the
consolidation of systems onto fewer physical machines,
while preserving strong service isolation. However, in
that scenario the available main memory size limits the
number of VMs that can be colocated on a single machine.

Prior work has shown great opportunity for memory
deduplication. There may be plenty of redundant data
between VMs (inter-vm sharing), e.g., if similar operat-
ing systems (OSes) or applications are used in different
VM instances. Moreover, previous studies have shown
that the memory footprint of VMs often contains a signif-
icant amount of pages with equal content within a single
instance (self-sharing) [3]. In both cases, memory can
be freed by collapsing redundant pages to a single page
and sharing it in a copy-on-write fashion. However, such
pages cannot be identified using traditional sharing mech-
anisms due to the semantic gap [5] caused by the isolation
of VMs.

Two techniques have been used in the the past to make
the detection of such sharing opportunities and thus dedu-
plication of redundant pages possible.

Paravirtualization closes the semantic gap through
establishing an appropriate interface between host and
guest [4, 6] to communicate semantic information. This
implies modifying both host and guest.

Such an interface has previously been used to help
deduplicating named memory pages—memory pages
backed by files: Satori [6] successfully merges named
pages in guests employing sharing-aware virtual block
devices in Xen [2]. Paravirtualization-based approaches
have only been used selectively and rudimentarily to make
sharing of anonymous memory (e.g., heap/stack memory)
possible, through hooking calls such as bcopy [4].

Applying these modifications to all guests and keeping
them compatible with latest developments at kernel and
hypervisor level is at least a great burden. It might not
even be possible at all to modify commercial or legacy

guests due to license restrictions or the lack of source
code. Moreover, the lack of semantic information that
the host has about guest activities is actually one of the
key features of virtualization: The host does not know nor
needs to know the OS, file system, etc. inside the VM.

Memory scanners mitigate the semantic gap by scan-
ning for duplicate content in guest pages [7, 1]. They
index the contents of memory pages at a certain rate, re-
gardless of their usage semantics.

Scanners have their downside when it comes to effi-
ciency. Especially the merge latency, the time between
establishing certain content in a page and merging it with
a duplicate, is higher in systems based on content scan-
ning compared to paravirtualization-based systems that
merge pages synchronously when they are established.

Memory scanners trade computational overhead and
memory bandwidth with deduplication success and la-
tency. Current scanners need a considerable amount of
time to detect new sharing opportunities (e.g., 5 min) and
therefore do not exploit the full sharing potential. In
our analyses, we have confirmed these results; however,
we have found memory scanners to work well only for
deduplicating fairly static memory pages.

XLH is our contribution that combines the key benefits
of both previous approaches. We have observed that:

• All types of memory contents (named and anony-
mous) contribute to memory redundancy.

• Many shareable pages in the host’s main memory
originate from accesses to background storage: when
multiple VMs create or use the same programs,
shared libraries, configuration files, and data from
their respective virtual disk images (VDIs).

The main contribution is to observe guest I/O in the
host and to use it as a trigger for memory scanners in

1



order to speed up the identification of new sharing oppor-
tunities. For this purpose, XLH generates page hints in
the host’s virtual file system (VFS) layer, whenever guests
access their background store. XLH then indexes these
hinted pages soon after their content has been established
and thus moves them earlier into the merging stage. In
consequence, XLH can find short-lived sharing opportuni-
ties and shares redundant data longer than regular, linear
memory scanners without raising the overall scan rate.

Figure 1 depicts the significance of the merge latency
on how many pages are shared at any given point in time:
The later memory is indexed by the scanner, the later a
shared page can be established. Indexing sharing oppor-
tunities earlier adds to the sharing potential and to longer
sharing time-frames.

Saved 

Pages

1

1121

KSM

XLH

Equal

Pages

t

2

Page can be deduplicated
XLH visits page KSM visits page

Figure 1: Linear or random memory scanners index pages
after an expected value of half a scan cycle. XLH visits
I/O pages immediately after they are established. If a
duplicate is not found until a large proportion of the mean
sharing time is over, the deduplication effectiveness is
lowered significantly.

We only modify the host in our approach—XLH would
not benefit from and thus does not make use of paravirtu-
alization. In fact, due to the generality of our approach,
XLH also works for deduplicating native processes when
no virtualization is involved. Note that XLH does not
solely target disk accesses but issues hints for all I/O
that goes through the VFS interface, including network
file systems such as NFS. Overall, I/O-advised scanning
makes more effective detection of sharing opportunities
possible without the need to modify guests.

We have implemented our approach in Linux’ Kernel
Samepage Merging (KSM) and evaluated its properties.
We have shown that XLH is able to quickly deduplicate
the memory of newly booted VMs, which is especially
beneficial when sandboxing short-running jobs or migrat-
ing many VMs at once. Measurements of kernel build and
web server scenarios show that XLH deduplicates equal
pages that stem from the VDI earlier by 2-4 minutes and
is capable of merging between up to 10x as many sharing
opportunities than the baseline system. For the kernel
build benchmark, XLH performs constantly better than
KSM even if the scan rate is set 5x lower. We have also
evaluated XLH in an unfavorable scenario and found that

it did not worsen the sharing performance compared to
KSM. XLH reaches its effectiveness with little to no addi-
tional CPU overhead or loss in I/O throughput compared
with KSM.

The proposed talk will cover our findings in the area
of main memory duplication, main memory deduplica-
tion techniques in general, as well as our contribution
XLH with its properties. It will also give an outlook on
future research directions in the area of main memory
deduplication.

References
[1] ARCANGELI, A., EIDUS, I., AND WRIGHT, C. Increasing memory

density by using KSM. In Linux Symposium 2009.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., AND ET AL. Xen and
the art of virtualization. SOSP 2003.

[3] BARKER, S., AND ET AL. An empirical study of memory sharing
in virtual machines. In USENIX ATC 2012.

[4] BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM, M.
Disco: running commodity operating systems on scalable multipro-
cessors. Transactions on Computer Systems 1997.

[5] CHEN, P. M., AND NOBLE, B. D. When virtual is better than real.
In HotOS 2001.

[6] MIŁÓS, G., MURRAY, D. G., HAND, S., AND FETTERMAN, M. A.
Satori: Enlightened page sharing. In USENIX ATC 2009.

[7] WALDSPURGER, C. A. Memory resource management in VMware
ESX server. SIGOPS Operating System Review 2002.

2


