
FusedOS: General-Purpose and Specialized
OS Personalities Side by Side

Marius Hillenbrand
Karlsruhe Institute of Technology

Yoonho Park Bryan
Rosenburg Kyung D. Ryu

IBM Research

Frank Bellosa
Karlsruhe Institute of Technology

1 Introduction
We currently see a change in what are considered the most
demanding computational problems. So far, notions such
as supercomputing have been firmly associated with high-
performance computing (HPC) and problems from science
and engineering. However, the statistical analysis of huge
amounts of real-world data (Big Data) is increasingly per-
ceived as a new great challenge for computing while HPC
users move to new programming languages and frameworks
at the same time. As a result, there is a strong incentive to
facilitate the large-scale distributed systems used in HPC for
new workloads – both for manufacturers of such systems
and for users looking for scalable systems for their Big Data
tasks [2].

On the hardware side, multicore counts continue to in-
crease but heterogeneous technology is increasingly used to
address power-efficiency and density challenge.

In our talk, we will first describe the design principles of
FusedOS and present the architecture and the prototype of
our first incarnation of a fused OS on IBM Blue Gene/Q.
Then, we will discuss some lessons learnt and the directions
that will drive our project in the future.

2 Principles
In our FusedOS project we address both heterogeneity of
cores and the need for a richer and familiar operating en-
vironment on large-scale systems. We base our research on
two principles: We aim to (1) combine two different OS per-
sonalities, while (2) presuming heterogeneous cores.

2.1 Fusing OS Personalities
Our decision to fuse two OS personalities is inspired by the
situation in high-performance computing (HPC): There, de-
velopers either aim to streamline and customize an existing
OS, or build a custom and minimal OS from scratch. The
downsides of both approaches are well-known. In extending
an OS, the existing code base limits how fundamental princi-
ples can be changed. These limits can be overcome by writ-
ing an OS from scratch, though at the cost of an enormous
engineering effort.

In FusedOS, we propose an alternative option and instead
put OS personalities side by side. Whereas traditionally vir-
tualization has been used to run several OS’s on one system,
we embrace space partitioning as the prior means to that pur-
pose. Some cores run the general-purpose FWK, others are
serviced by a specialized and streamlined OS. Thereby, we
support systems without virtualization support and can avoid
nesting another level of virtualization when running inside a
virtual machine.

Former proposals for specialized OS’s have typically
aimed at replacing a general-purpose OS as far as possible
(recent examples are Libra and Unikernel [1, 5]). In contrast,
we maintain both OS personalities and allow applications to
choose the one best matching its demands. Instead of iso-
lating the two domains, processes can interact between OS
personalities (as far as the semantics of the respective system
call interfaces permit).

2.2 Heterogeneity
In FusedOS, we presume heterogeneous cores. We differ-
entiate between streamlined and low-complexity applica-
tion cores, optimized to execute application code power-
efficiently, and general-purpose system cores. The applica-
tion cores run highly-parallelized parts of a program whereas
the general-purpose cores provide high single-thread perfor-
mance for serial parts.

Whereas our model fits both common variants of con-
temporary heterogeneous systems, we envision application
cores to be inbetween these cases. In contrast to GPUs, we
assume a more standard programming model. In contrast to
Xeon Phi and former proposals for heterogeneity, we assume
that application cores do not support the separation between
system and user mode. Thus, they are controlled remotely
by the system cores. The system cores will have features
found in high-performance, general-purpose processors such
as strong integer performance and out-of-order execution.

3 FusedOS for IBM Blue Gene/Q
Our first instantiation of the FusedOS principles is a proto-
type running on IBM R© Blue Gene R©/Q. We combine Linux

1 2013/3/16



with the Compute Node Kernel (CNK) [3], a specialized
light-weight kernel used by Blue Gene/Q. Thereby, we aim
to support typical HPC workloads as well as jobs that require
more POSIX functionality than CNK provides, without in-
vesting the effort of re-implementing these features.

Although Blue Gene/Q has homogeneous cores, we sim-
ulate heterogeneity by assigning a set of cores to act as ap-
plication cores.

3.1 Architecture
FusedOS for Blue Gene/Q consists of four components: (1)
Linux running on the system cores, (2) the Compute Library
(CL) which encapsulates CNK’s functionality in a Linux
user process, (3) a Linux kernel module that provides a
control interface for the application cores to CL and a small
system-level monitor on the application cores.

We modified Linux to partition cores and memory and to
export the application cores’ control interface to CL. In order
to minimize the changes to Linux, we added only minimal
hooks and placed the bulk of our code in two loadable file-
system kernel modules. Using these pseudo filesystems, CL
can allocate application cores and control the execution of
CNK applications on application cores via ioctl and mmap
system calls. CL itself runs on a system core as a regular ap-
plication in Linux. It provides OS services for CNK applica-
tions, many of which it delegates to Linux, taking the role of
a proxy process. The supervisor-state monitor on application
cores controls address translation and process execution on
behalf of CL. When a thread on an application core makes
a system call or encounters an exception, the monitor saves
the thread’s context and then passes control to CL.

3.2 Prototype Status
Our prototype supports running Linux applications on sys-
tem cores as well as unmodified CNK applications on appli-
cation cores. For each CNK process, there is one CL process
running in Linux. As CNK’s system call interface resembles
Linux’s, processes can interact between the two domains.
For example, a Linux process could spawn many processes
running in parallel on the application cores and can coordi-
nate them, at run-time, via IPC.

We have shown that single-node performance of HPC ap-
plications on FusedOS is competitive with CNK and much
better than on Linux [6]. In ongoing research, we have added
support for running MPI applications with inter-node com-
munication via the Blue Gene/Q torus network. We will in-
clude early performance results on our poster.

4 Research Goals and Future Directions
The FusedOS project started with a clear focus on HPC. We
began exploring how we could bring a general-purpose OS
into what had strictly been the domain of customized sys-
tems before. We fused the existing special OS with a general-
purpose OS to maintain performance characteristics. At the

same time, we embraced the premise of future HPC systems
being heterogeneous and, thus, cores having different roles.

System call latency in our prototype turned out to be
very high, as processes on application cores get their system
calls serviced on a remote core. That is very different from
other application-domain-driven library OS’s (such as [1,
5]), which turn system calls into function calls and do the
costly interaction with a remote general-purpose OS only for
services they do not implement themselves.

Still, the performance of HPC applications turned out to
be surprisingly good. We observed that, after an initial setup,
such applications hardly do any time-critical system calls.
Instead, they rely on the message-passing interface (MPI)
libraries with user-level network access that they are linked
against [4]. Thus, these MPI stacks have actually evolved
into library OS’s. Instead of on exokernels or hypervisors,
they are based on the API of a general-purpose OS.

In future work, we will look for similarly evolved de
facto-library OS’s in domains besides HPC, as well, and
whether our FusedOS approach can be generalized for these
scenarios. At the same time, we will follow the development
of the hardware of heterogeneous systems and evolve our
heterogeneity model accordingly.

References
[1] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva, D. Grove,

K. Kawachiya, O. Krieger, B. Rosenburg, E. Van Hensbergen,
and R. W. Wisniewski. Libra: a library operating system for a
jvm in a virtualized execution environment. In VEE ’07, pages
44–54, New York, NY, USA, 2007. ACM.

[2] J. Appavoo, A. Waterland, D. D. Silva, V. Uhlig, B. S. Rosen-
burg, E. V. Hensbergen, J. Stoess, R. W. Wisniewski, and
U. Steinberg. Providing a cloud network infrastructure on a
supercomputer. In S. Hariri and K. Keahey, editors, HPDC,
pages 385–394. ACM, 2010.

[3] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski.
Experiences with a lightweight supercomputer kernel: Lessons
learned from Blue Gene’s CNK. In ACM/IEEE International
Conference for High Performance Computing (SC10), New
Orleans, LA, November 2010.

[4] S. Kumar, A. R. Mamidala, D. Faraj, B. E. Smith, M. Block-
some, B. Cernohous, D. Miller, J. Parker, J. Ratterman, P. Hei-
delberger, D. Chen, and B. D. Steinmacher-Burow. Pami: A
parallel active message interface for the blue gene/q supercom-
puter. In IPDPS, pages 763–773. IEEE Computer Society,
2012.

[5] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. Unikernels:
Library operating systems for the cloud. In ASPLOS ’13, 2013.

[6] Y. Park, E. V. Hensbergen, M. Hillenbrand, T. Inglett, B. S.
Rosenburg, K. D. Ryu, and R. W. Wisniewski. Fusedos: Fusing
lwk performance with fwk functionality in a heterogeneous
environment. In SBAC-PAD, pages 211–218. IEEE, 2012.

2 2013/3/16


