Quo Vadis, ISA
& Cui Bono?

Michael Engel — TU Dortmund

Gl FG-BS - TU Berlin —8.11.2013

W

|SA”?

Not that one!

|SA!

e |nstruction Set Architecture

 "An[...] instruction set architecture (ISA) is the part of the
computer architecture related to programming, including
the native data types, instructions, registers, addressing
modes, memory architecture, interrupt and exception
handling, and external 1/0O.
An ISA includes a specification of the set of opcodes
(machine language), and the native commands)
Implemented by a particular processor.” [wikipedial (\

* Let's take a closer look on trends in ISA extensioy\
3

Evolution of ISA Extensions

Only considering (Intel) x86 architecture here
1978: Introduction of 8086 CPU architecture
1980: 8087 FPU

1982: 80286 — 16 bit protected mode

1985: 80386 — 32 bit protected mode

1996: MMX — SIMD

1999: SSE1, 2001: SSE2, 2004: SSES, ...
2006: SSE4 — more insns & precision

2008: AES

...what else?

Quo Vadis, ISA?

* Current developments in instruction set extensions

* A glimpse on future developments

.. & Cui Bono?

 \WWhom are the ISA extensions expected to help?

 How can they help OS designers and developers”?

* This talk: Mostly questions (few answers)

e Starting point for discussions

|ISA: No Fun for the OS?

Real mode CR3
Long mode
Protected mode
Segment Registers
MMU & TLB

Task State Segments Call Gates

Processor designers are (often) giving
OS designers and developers a hard time

v

Intel TSX

Intel TSX: Transactional Synchronization Extensions

 Implemented in Haswell and beyonad

 Beware: not in all Haswell CPUs (— ark.intel.com)
Transaction semantics for main memory aCCeSSeS

mplemented by buffering memory writes

Hardware uses L1 cache to buffer transactional writes
e Writes not visible to other threads until after commit
e Eviction of transactionally written line causes abort

Buffering at cache line granularity

8

http://ark.intel.com

TSX Example: Lock Elision

Coarse grain locking effort Fine grain locking behavior
;‘"“ =TT ;' """""" Lzl
i _Asio0 [1 Asio0 B
| : Hardware | 1
i B $200 : : B $200 |
I cs200 §F 1 Ccs$200 ,pwm
Developer Effort Program Behavior

 Developer uses coarse grain lock
 Hardware elides the lock to expose concurrency
 Alice and Bob don't serialize on the lock

 Hardware automatically detects real data contlicts

Ravi Rajwar, Martin Dixon (Intel): Intel Transactgonal Synchronization Extensions, IDF'12

TSX Example: Lock Elision

mov eax, 1

lock xchg mutex, eax
cmp eax, 0

jz Success

pause

cmp mutex, 1

jz Spin

Jmp Try

Spin:

N

jz Success
pause

cmp mutex,
jz Spin

1

A
\ Enter HLE execution

Library
Application —>» | /

acquire lock (mutex)

; do critical section
function calls,

; memory operations,

If lock not free, execution
will abort either early (if

pause used) or when lock
gets free

release lock (mutex)
/ 7 Commit HLE execution

mov mutex, 0

=

xrelease)mov mutex, 0

Ravi Rajwar, Martin Dixon (Intel): Intel Transactjonal Synchronization Extensions, IDF'12

TSX: RTM mode

Retry: xbegin Abort ... Enter RTM execution, Abort is fallback path

cmp mutex, 0 .. Check to see if mutex is free
jz Success

xabort $SOxff

.. Abort transactional execution if mutex busy

Abort:

.. check EAX and do retry policy | ... Fallback path in software

- actually acquire lock or wait | patry RTM or explicitly acquire mutex

. to retry.

\cquire_lock (mutex)

; do critical section RTM — "R@StFlCted
; function calls, : .
; memory operations, .. ransaC’[IOﬂal |\/|emOI’y
release lock (mutex)

Pl

cmp mutex, 0
jnz release lock

xend ... Commit RTM execution

... Mutex not free ->was not an RTM execution

Ravi Rajwar, Martin Dixon (Intel): Intel Transacfional Synchronization Extensions, IDF'12

Use Case: Checkpointing

* Dependability research — DFG SPP1500

* Checkpoint and recovery: common method to restore state
corrupted by HW error

e |s TSX useful here?

* |dea: Hardware TM enables "free" checkpointing and
restore for fault-tolerant applications

* Run thread+checker thread(s) in parallel on the same
memory locations

e |f deviation detected, abort transaction and restore state

e Otherwise, commit transaction and continue

12

..Hesearch ldeas

* You have a great idea for a research topic...and what happens?

e Someone else had that idea before!

 Might have been obvious here? suuppicaios . N
regfileC P . — thread N ' b
e Yalcin [1] requires comparator HW g == N\
g)- whet B) \] Hewet)
 Metzlaff [2] proposes comparison 3 ::)*'“"“ e RN
. . ' - ! resdhet yead et v
approach using lazy versioning z) AR
3 . A
= | + yalidation - |
* What's left for you to do? N R NN
i - N i
* Evaluate if these ideas really work ¥ 2\
EndApplication > sckuo threa
on real hardware " ocgias tread e

[1] Gulay Yalcin et al.: FaulTM: Error Detection and Recovery Using Hardware Transactional
Memory, Proc. of DATE 2013, pp. 220-225

[2] Stefan Metzlaff, Sebastian Weis, and Theo Ungerer: Towards Transactional Memory for Safety-
Critical Embedded Systems, Euro-TM WS on Trdfisactional Memory 2013 (ext. Abstract)

.. ISX Implementation

Checkpoint/restore of (mostly) register and L1 data cache state

Read and write addresses for conflict checking

* Jracked at cache line granularity using physical address

Data conflicts occur if at least one request is doing a write

e Detecteo

e Detectec

at cache line granularity

using existing cache coherence protocol

* Abort when conflicting access detected

Restricted size of transactions

* Depending on L1 D$ utilization, locking of cache lines, ...

14

..and Disillusions

Problem with Intel TSX for dependability checkpointing support

 Even if identical data is written by concurrent tasks (WAW conflict),
the transaction is aborted!

Additional complications:
e SOome instructions and events may cause aborts
e Uncommon instructions, interrupts, faults, etc.
e Software must provide a non-transactional path
 HLE: Same software code path executed without elision
« RTM: SW fallback handler must provide alternate path
Best case: (lots) more work required

Worst case: Intel TSX not useful for dependability checkpointing

15

Intel MPX

 New instructions enabling runtime buffer overtlow checks

* |Improve software security and robustness

e Four new registers to store bounds 128-bit boundary
registers BNDO..BND3

e New instructions to check bounds prior
toO memory access

e Exception on bound violations

« Expected 2015... Upper Bound Lower Bound |Buffer|
A A

4 N 7 N\
e.g. BNDO = 00F3 2250 00F3 2210 F——

Baiju Patel, Intel: Stop Buffer Overflows in Their Tracks with

Intel Memory Protection Extensions (IDF'13 Presentation)
16

OXFFFF FFFFF

Ox00F3 2250

Ox00F3 2210

0x0000 0000

MPX strcpy

// s2 is RDX, and sl in RCX, bounds for s1 in BNDO by calling

convention
strcpy(char *s1, char *s2) { .
while (*s1++ = *s2++) {} — New Register

b v/
BNDCL BNDO, [RCX] ; check s1 (RCX) LB against bounds in BNDO
L1: MOVB RAX, [RDX] ; load a char
INC RDX
BNDCU BNDO, [RCX] ; check UB for s1 before write
MOVB [RCX], AL
INC RCX
TESTB AL, AL
BND JNE L1 ; BND (0xF2) prefix is NOP in MPX enabled code
BND RET

PX instructions

BNDCL and BNDCU check lower and upper bounds,
if check fails, signal exception #BR

Baiju Patel, Intel: Stop Buffer Overflows in Their'Tracks with Intel Memory Protection Extensions.

Time to think about...

* |s there demand for OS-supporting ISA extensions”

 Can we improve the interaction between OS and
processor architecture”?

* Perhaps: a fresh look at OS-CPU codesign?

* What might these extensions look like”

* |nspiration from pcode” DEC Alpha PALcode

18

Don't ask what you can do
for the processor designer
ask what the processor
designer can do for you!

ISA and RISC-vs-CISC

e Patterson&Ditzel's paper: Foundation of RISC ideas
 Reduced instruction sets vs. "baroque” CISC ISA
» Classical argument in favor of RISC

 VAX "Index" instruction: similar to proposed MPX

David Patterson, David Ditzel: The Case for the Reduced Instruction Set Computer
ACM SIGARCH Computer Architecture News, Vol. 8 Issue 6, Oct. 1980, pp. 25-33

20

VAX Index Instruction

o Similar to newly proposed x86 MPX extension

The indexin operand is added to the subscript operand and the sum multiplied
by the size operand. The indexout operand is replaced by the result. If the
subscript operand is less than the low operand or greater than the high

operand, a subscript range trap is taken. INDEX
Compute Index
Format
opcode subscript.rl, low.rl, high.rl, size.rl, indexin.rl,
indexout.wl
Condition Codes
N < indexout LSS 0;
Z < indexout EQL 0;
\" < 0;
C < 0;
Exceptions
Compaq Computer Corporation: VAX MACRO subscript range
and Instruction Set Reference Manual Opcodes

(2001) Order Number: AA-PS6GD-TE 1

0A INDEX index

What Patterson wrote

——— ——— — ————— r - TR WOER. W W W AR R - - - T W Ak o - - vb NN AN

Thls case covers 40% of the load multnple instructions in typlcal programs. Another comes from the
VAX-11/780. The INDEX instruction is used to calculate the address of an array element while at
the same time checking to see that the index fits in the array bounds. This is clearly an important
function to accurately detect errors in high-level languages statements. We found that for the VAX
11/780, replacing this single "high level” instruction by several simple instructions (COMPARE,
JUMP LESS UNSIGNED, ADD, MULTIPLY) that we could perform the same function 45%
faster! Furthermore, if the compiler took advantage of the case where the lower bound was zero,
the simple instruction sequence was 60% faster. Clearly smaller code does not always imply faster
code, nor do "higher-level” instructions imply faster code.

David Patterson, David Ditzel: The Case for the Reduced Instruction Set Computer
ACM SIGARCH Computer Architecture News, Vol. 8 Issue 6, Oct. 1980, pp. 25-33

22

..and how he was proven

Wrong
e Reaction of DEC's VAX architects

* One of the basic propositions for RISC was invalid

The paper reports that a sequence of several simple instructions
can replace the VAX INDEX instruction with a 45% speed gain on
the 780. This is a problem of implementation, not architecture.
Fundamentally, after all, the implementation of the INDEX
function with more than one instruction simply cannot take less
time than the one-instruction version, assuming equal hardware in
both cases. The explanation of this anomaly is that the 788's
Floating Point Accelerator speeds up the multiply in the
multi-instruction implementation, but doesn't see INDEX at all.

Douglas W. Clark and William D. Strecker: Comments on "the case for the reduced
instruction set computer,” by Patterson and Ditzel
ACM SIGARCH Computer Architecture News, Vol. 8 Issue 6, Oct. 1980, pp. 34-38

23

A Proof (No Pudding

* You thought you would never see microcode again? :-)

Z7-ESOAA=124.0 ; INDEX .MIC [600,1204] Index instruction 14=Jan 82 iche 2 Frame LS Suence 269
: PIW124 .MCR 600,1204] MICRO2 1L(03) 14~Jan-82 15:30:16 VAX11/780 mcrocode PCS 01, FPLA QE, WCS124
: INDEX .MIC £600,1204) Index instruction : INDEX
:}885 =0110 ;CALL CONSTRAINT BLOCK FOR MUL.S ROUTINE
;10014 INDEX.3::;0110 ~ecccccccmcccanaa;
U 0516, 0000,003D,0180,F800,0000,0430 }%}g CALL, J/MUL.S : GO DO CINDEXIN+SUBSCRIPT)*SIZE
;10017 FEYo) | R : RETURN FROM MUL.S
;10018 ALU_D. NEZ_ALU. VeC_ 0 : SET CONDITION CODES FOR RESULT
U 0517, F001,003F,01F0,F847,0050,0300 :}88}8 WRITE.DEST : WRITE RESULT BY GOING TO C~FORK @ WRD:
;9421 - ;
19422 RCR15]_Q, D_Q, : SAVE M'CAND
19423 SC_SC+R[SCT, : SC NOW CONTAINS 200
19424 0.RE.O? : MUL'IER IS 0?
19425
19426 =101 :0
19427) K[ZEROJ uzz _ALU. VRC 0,. PROD IS O SINCE MUL'IER IS 0
19428 RE TURNS WRITE RESULT 0
19429
9430 1 - :
29431 Q K[SC1.CTX, ; SET SHF COUNT FOR B,Ww.L
19432 LAB_RI[R15] ; LATCH MUL'CAND
:941:5,,13. =;END
;9435 sc _Q(EXP), STATE Q(EXP),; SC GETS COUNT (4,8,16) FOR B,W,L VIA EBMX
19436 FETQ(EXP), Q D, DK/SHF, ; SAVE CT TO REMEMBER B,W,L
:&% RCTTOI_LB.LEFT.SI/ZERO : RC 0 GETS 2 TIMES M'CAND
;9439 =0» —ereeecc e ——— :
: 9440 o RCLT1],0 0, : D GETS M'IER
19441 STATE_STATE+FE, : STATE HAS # BITS (8.16.32) FOR B.W.L
9442 CALL,"SIGNS?, J/MUL.6 - POS OR NEG MUL'CAND?

