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1 Introduction
Mediating across user application requirements and hard-
ware capabilities, OSs are required to adapt if either
changes. Classical OS architectures usually match a lim-
ited spread of hardware configurations and application re-
quirements (i.e., they constrain design flexibility) and toler-
ate limited changes in their execution environments during
operation (i.e., they constrain run-time flexibility). Mono-
lithic OSs, for example, typically lack run-time flexibility,
as large parts of the system are statically linked into a mono-
lithic binary where individual parts are difficult to exchange
at run-time.

The proposed hierarchical microkernel (HM) is a novel
OS architecture with flexibility and robustness as its primary
design goals. Flexibility, being “the ease with which a sys-
tem or component can be modified to use in applications or
environments other than those for which it was specifically
designed” [3], covers both design and run-time aspects. Ro-
bustness is the ease with which integrity requirements are
maintained. We achieve flexibility and robustness by the
following design choices.

1. HM systems are composed from small exchangeable
components, called modules.

2. Inter-module communication is solely based on
message-passing for loose coupling and a local broad-
cast communication paradigm across neighboring
modules enables the safe replacement of components at
run-time: component replicas can eavesdrop on neigh-
bors they are expected to replace.

3. Hierarchical organization: Modules are organized in
a mono-hierarchy, where each module is directly re-
sponsible for managing its subordinate child modules,
to confine the overhead of broadcast communication to
the respective subsystems.

4. The parent-child relationship in the mono-hierarchy
fosters an asymmetric trust relation similar to the
supervisor-/user-mode boundary found in many OSs:
We require children to rely on their parents but not vice
versa.

2 HM Architecture
The HM composition from the two core building blocks –
modules and buses – is depicted in Figure 1. Modules are
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Figure 1: Example of a HMOS

self-contained functional entities, resembling both active or
passive elements (e.g., processes or libraries) found in com-
modity OSs. Modules are isolated from each other simi-
lar to processes in traditional OS architectures. Interaction
between modules is accomplished solely using message-
passing over communication channels called buses. Mod-
ules use a simple send/receive interface for exchanging mes-
sages over a bus.

2.1 Inter-module communication
Unlike traditional inter-process communication (IPC)
paradigms, where two components create virtual point-to-
point channels, buses can be shared by an arbitrary number
of modules and messages are always locally broadcasted
to all attached modules. The implementation of point-to-
point communication on top of broadcast is still possible if
this is required by the attached modules, just as in physical
bus-based communication networks. Broadcast message-
passing has the advantage that a sender does not need to
know (and specify) details of the system organization, e.g.
the location of the recipient, to initiate and pursue communi-
cation. Broadcast communication also facilitates the safe re-
placement and recovery of components at run-time. For ex-
ample, a monitoring module can journal all messages on the
bus and keep track of the attached (child) modules’ states.
In case of a module failure, the monitor can aid detection,
initiate a restart of the module, and recover its previous state
from the monitored message sequence.

Message-passing structurally turns OSs into inherently
distributed systems with all their benefits in terms of scal-
ability [1, 5]. Buses within the system can be chosen or im-



plemented according to the requirements of the system de-
signer or attached modules. It is possible to apply industry
standards (e.g. MPI, IP, etc) for compatibility with existing
systems and communication networks.

2.2 HM’s hierarchical organization
To avoid centralized resource management, which could be-
come a performance bottleneck (especially with a broadcast
communication paradigm) or a single point of failure, our
architecture follows a divide-and-conquer strategy to dis-
tribute the abstraction and management of system resources.

To achieve this, modules are composed hierarchically,
leading to several distinct levels in the system (cf. Figure 1).
The number of levels in the system depends on the OS de-
signer’s choice of the hierarchy depth. The microkernel is
the root module and provides a basic hardware abstraction
to a set of modules over a bus. As this bus is attached “on
top” of the microkernel, it is referred to as the microkernel’s
child bus. The microkernel and its child bus are operating
on Level 0. The microkernel’s child bus is referred to as Bus
0. The other modules connected to Bus 0 are called Level 1
modules. They can provide abstractions to Level 2 modules
using separate Level 1 buses.

Except for the microkernel, which does not have a parent
bus, each module has to be attached to exactly one parent
bus and each bus has to be attached to exactly one parent
module. This results in a mono-hierarchical organization
visualized by a tree structure where nodes represent mod-
ules and edges between them represent buses. In Figure 1,
Bus 0 is the parent bus of the modules Apps, File system and
Drivers. The microkernel, as the parent module of Bus 0,
is referred to as the parent module of these child modules.
Parent modules are responsible for managing the resources
of their direct children. Hence, they can apply management
algorithms and policies, e.g. for scheduling or resource al-
locations, that suit their requirements best.

Modules that are connected to a parent bus and a child bus
are called gateways, as they can forward or translate mes-
sages between these buses. In Figure 1 the modules Apps,
Drivers, App1 and App2 are gateways. Due to the tree struc-
ture of the system, there exists exactly one path between any
two nodes. Consequently, a message sent in the system can
eventually reach all modules.

3 HM Flexibility and robustness/trust aspects
HM flexibility aspects: Targeting design flexibility, a high
degree of modularity due to small and isolated modules en-
ables the reuse of a large fraction of the code base.

HM OSs are also intended to provide high run-time flexi-
bility: A high degree of module isolation is one prerequisite
for hot-swapping system functionality. Furthermore, broad-
cast communication across modules on the same bus sim-
plifies the state transfer of modules by facilitating the mon-
itoring of module interactions and, thereby, module state
inference. Interposition is easily accomplished, as parent

modules control where child modules are attached in their
sub-hierarchy.

HM robustness and trust aspects: The HM design pro-
vides robustness as a direct consequence of the loose cou-
pling between small and isolated components, since this
limits the possibility of undetected error propagation from
faulty or vulnerable modules to other modules. The hierar-
chical structure facilitates error containment to system sub-
hierarchies, thereby preventing defects in “less operation-
critical” components in the upper levels from affecting
“more operation-critical” components in the lower levels.
By organizing system components in a hierarchy rather than
a flat structure, it is possible to place components according
to their level of trust, where trust comprises both reliabil-
ity and security aspects. For example, device drivers are
usually provided by hardware manufacturers rather than OS
developers. This leads to varied degrees of trust in different
components of the system. For existing operating systems,
drivers either run at the same privilege level as the OS or
as untrusted user applications, where a positive impact on
trustworthiness is traded for a significant performance over-
head. In many modern systems considerable effort is spent
on additional sandboxing mechanisms for the inclusion of
untrusted third-party components at the same privilege level
as a trusted component, both in the kernel (e.g. [4, 2]) and in
user processes (e.g. [6]). Our architecture natively supports
a hierarchy of trust, that allows fine-grained trade-offs be-
tween the assurance of dependable operation and run-time
overhead for components: A position in the upper system
levels provides higher isolation, but imposes communica-
tion latencies because of (a) runtime monitoring of the pos-
sibly erroneous/malicious actions of the module and (b) the
necessity of message forwarding/routing by gateway mod-
ules and buses. Such isolation/performance trade-offs can
be adjusted at runtime through module relocation to other
system levels.
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