
StackIDS - Catching Binary Exploits before they

Execute a System Call

Jakob Lell Sebastian Koch Joerg Schneider

Modern processor architectures provide mechanisms to distinguish between
memory areas containing executable code and memory areas which can be freely
modified by the running programs but will not be executed by the processor. On
a system using these mechanisms, an attacker exploiting a software flaw is not
able to modify the memory with the executed code nor can he place own code in
a data area and redirect the control flow there. However, the control flow does
not only depend on the program code but also on data values which have to
be modified during the program execution. The function return pointers stored
on the stack are one prominent example for such data. Moreover, on current
architectures the return pointers are stored together with user data, e.g., local
variables of the functions.

Recently developed attack techniques like return into libc or return oriented
programming (ROP) exploit this mix of user data and control flow relevant
data. During an ROP attack, the attacker first gains access to write arbitrary
data on the stack, e.g., using a buffer overflow. Then, he modifies the stack such
that the respective return addresses point in the existing code to some useful
statements close before a return statement. It has been shown that only few of
these useful statement combinations—the so called gadgets—have to be found
in the existing code to form a Turing complete execution environment for the
attacker’s exploit code.

However, exploiting a vulnerability in a program usually implies taking over
the underlying system. This can only be achieved using at least one system
call to communicate with the operating system. While current architectures
still mix control flow data and user data, a good detector inside the operating
system is needed to distinguish system calls made during normal operation from
system calls made by an attackers exploit code.

While previous work mainly focused on detecting anomalies in the sequence
of the system calls or on using predefined policies, we propose a new detection
mechanism based on the integrity of the stack. When the operating system
receives a system call, it compares the current user stack data with the unmod-
ified loaded program code. If the stack shows a function call hierarchy, which
cannot be realized by the normal control flow of the program, the system call is
not executed and the exploited program is terminated.

In this paper, we define four conditions to detect malicious manipulations of
the stack and other data structures indicating a compromised control flow. We
have shown with our new monitoring tool StackIDS how the needed data can be
collected and analyzed by the operating system. In experiments with realistic
software and exploits, we evaluated the effectiveness and the performance of our
prototype.

1


