# A ROS-based framework for collaborative robot teams

#### Andreas Witsch

Distributed Systems Group Kassel University



|              |        |            | VERTEILTI | SYSTEME |
|--------------|--------|------------|-----------|---------|
| Introduction | Vision | Worldmodel | Teamwork  | Summary |
| 00000        | 000    | 0000       | 00000000  | 00      |

### Outline

Introduction RoboCup The Carpe Noctem Robotic Team Vision Worldmodel Teamwork Summary •



Summary

 Introduction
 Vision
 Worldmodel
 Teamwork

 ●○○○○
 ○○○○
 ○○○○○
 ○○○○○○
 ○○○○○○○





RoboCup is a multi-national research effort aiming at:

- Combining and advancing artificial intelligence, robotics, and related fields
- Providing a setting for comparison of different approaches
- Improving public visibility



### Robotic Soccer & the Middle Size League

- Five robots per team
- Fifteen minutes per half time
- $\diamond$  $18 \times 12m$  field
- Robots are 80cm high, and weigh  $\sim$ 35kg
- ◊ FIFA rules apply



|              |        |            |          | VERTEILTE SYSTEME |
|--------------|--------|------------|----------|-------------------|
| Introduction | Vision | Worldmodel | Teamwork | Summary           |
| 00000        | 000    | 0000       | 00000000 | 00                |

### Carpe Noctem

Founded in 2005, Carpe Noctem participates in RoboCup succesfully since 2006:

- ◊ 2006: 7th at WC in Bremen
- ◊ 2007: 5th at GO in Hannover
- 2008: 4th at GO in Hannover
- 2009: 4th at GO in Hannover 5th at WC in Graz
- 2010: 4th at GO in Magdeburg
- ◊ 2011: 3rd at GO in Magdeburg 7th at WC in Istanbul
- 2012: 4th at DO in Eindhoven

SXX.



Introduction 00000 Vision

Worldmodel

### **Carpe Noctem Robot**

Specifically designed hardware platform





Introduction 00000 Worldmodel

### Carpe Noctem Robot

- Specifically designed hardware platform
- Omnidirectional camera

IEEE1394a, 640  $\times$  480, 30 fps









|              |        |            |          | VENTELLE STSTEME |
|--------------|--------|------------|----------|------------------|
| Introduction | Vision | Worldmodel | Teamwork | Summary          |
| 00000        |        | 0000       | 00000000 | 00               |

### **ROS Architecture Overview**



A ROS-based framework for collaborative robot teams

|              |        |            | VENIELIE | STOTEIVIE |
|--------------|--------|------------|----------|-----------|
| Introduction | Vision | Worldmodel | Teamwork | Summary   |
| 00000        | 000    | 0000       | 00000000 | 00        |

### **ROS Architecture Overview**



A ROS-based framework for collaborative robot teams



Introduction 00000 Vision ●○○ Worldmodel

Teamwork

Summary

### **Robot Camera Perspective**



A ROS-based framework for collaborative robot teams

Andreas Witsch

Slide 9 of 27

|              |        |            | VERTEILTE | SYSTEME |
|--------------|--------|------------|-----------|---------|
| Introduction | Vision | Worldmodel | Teamwork  | Summary |
| 00000        | ○●O    | 0000       |           | 00      |

### Balldetection



A ROS-based framework for collaborative robot teams



Introduction 00000 Worldmodel

### **Template Matching**

From the insight, that every normal vector of a ball edge is directed to the ball center, the template matching makes use of the edge direction.



About 12 representative pixels are enough for a suitable classification and reduces computation time.



|              |        |            | VENILIEIE | SISILIVIL |
|--------------|--------|------------|-----------|-----------|
| Introduction | Vision | Worldmodel | Teamwork  | Summary   |
| 00000        | 000    | 0000       | 00000000  | 00        |

### **ROS Architecture Overview**



A ROS-based framework for collaborative robot teams

VEDTELLTE QVQTEME

|              |        |            | VERTEILT | ESYSTEME |
|--------------|--------|------------|----------|----------|
| Introduction | Vision | Worldmodel | Teamwork | Summary  |
| 00000        | 000    | ••••       | 00000000 | 00       |

### Localisation





#### Line points

These line points were extracted from the omni-vision image

#### Line points compared to reference set

An overlay extracted line points and a reference with perfect line points

|              |        |            | VERTEILT | <b>E</b> SYSTEME |
|--------------|--------|------------|----------|------------------|
| Introduction | Vision | Worldmodel | Teamwork | Summary          |
| 00000        | 000    | ©©©        | 00000000 | 00               |

### **Particle Filter**



Particle initialisation A new set of particles as position hypotheses

#### Particles after second iteration

Already clearly converged towards two possible positions

|              |        |            | venitere. | OTOTEME |
|--------------|--------|------------|-----------|---------|
| Introduction | Vision | Worldmodel | Teamwork  | Summary |
| 00000        | 000    | ○○●○       | 00000000  | 00      |

### **ROS Architecture Overview**



VERTENTE SVOTEME

|              |        |            |          | VERTEILTE SYSTEME |
|--------------|--------|------------|----------|-------------------|
| Introduction | Vision | Worldmodel | Teamwork | Summary           |
| 00000        | 000    | ○○○●       | 0000000  | 00                |

### Sensor Fusion

Quality of the extracted information is limited due to:

- Sensor noise
- ◊ Limited sensor range
- Estimation errors

To extract more precise information we use sensor fusion techniques to combine the individual informations to a global view, such as:

- Shared ball detection
- Obstacle merging

|              |        |            | VENIELLE | STOTEIVIE |
|--------------|--------|------------|----------|-----------|
| Introduction | Vision | Worldmodel | Teamwork | Summary   |
| 00000        | 000    | 0000       | 00000000 | 00        |

### **ROS Architecture Overview**



A ROS-based framework for collaborative robot teams

|            |        |            |          | VERTEILTE SYSTEME |
|------------|--------|------------|----------|-------------------|
| troduction | Vision | Worldmodel | Teamwork | Summary           |
|            | 000    |            | •0000000 | 00                |

### **Teamwork in Dynamic Domains**

Teams of agents cooperating in dynamic domains require:

- A language to describe team plans ("recipe") from a global perspective
- Ease of Modelling: simple and intuitive way to model multi-agent plans
- Formal semantics according to which these plans are executed
- Fast reaction of the team to changing situations
- Robustness towards breakdown of individual agents

XX

|             |        |            | VERTEILT | E SYSTEME |
|-------------|--------|------------|----------|-----------|
| ntroduction | Vision | Worldmodel | Teamwork | Summary   |
| 00000       | 000    | 0000       | 0000000  | 00        |

A Language for Interactive Cooperative Agents Core Language Elements:

Behaviours – atomic single-agent action programs

XX



- Behaviours atomic single-agent action programs
- Plans abstract multi-agent activity descriptions



- Behaviours atomic single-agent action programs
- Plans abstract multi-agent activity descriptions
- Plantypes sets of alternative plans



- Behaviours atomic single-agent action programs
- Plans abstract multi-agent activity descriptions
- Plantypes sets of alternative plans
- Tasks denote specific activities within plans



- Behaviours atomic single-agent action programs
- Plans abstract multi-agent activity descriptions
- Plantypes sets of alternative plans
- Tasks denote specific activities within plans
- Roles descriptions of capabilities

|                                                          |                                                            |                    |                     | VERTEILTE SYSTEME |
|----------------------------------------------------------|------------------------------------------------------------|--------------------|---------------------|-------------------|
| Introduction<br>00000                                    | Vision<br>000                                              | Worldmodel<br>0000 | Teamwork<br>0000000 | Summary<br>00     |
| Plans                                                    |                                                            |                    |                     |                   |
| <ul> <li>A pla<br/>achie<br/>main<sup>-</sup></li> </ul> | n is a recipe for<br>ving a goal or<br>taining a condition |                    | Defend              |                   |
|                                                          |                                                            |                    |                     |                   |
| A ROS-based framewo                                      | rk for collaborative robot teams                           |                    |                     | Slide 20 of 27    |
| Andreas Witsch                                           |                                                            |                    |                     |                   |

|              |        |            |          | VERTEILTE SYSTEME |
|--------------|--------|------------|----------|-------------------|
| Introduction | Vision | Worldmodel | Teamwork | Summary           |
| 00000        | 000    | 0000       | 0000000  | 00                |

- A plan is a recipe for achieving a goal or maintaining a condition
- Consisting of states and transitions between them



۰. .



- A plan is a recipe for achieving a goal or maintaining a condition
- Consisting of *states* and *transitions* between them
- States contain Behaviours and Plantypes





- A plan is a recipe for achieving a goal or maintaining a condition
- Consisting of states and transitions between them
- States contain Behaviours and Plantypes
- Initial states are tagged by Tasks and Cardinalities





- A plan is a recipe for achieving a goal or maintaining a condition
- Consisting of states and transitions between them
- States contain Behaviours and Plantypes
- Initial states are tagged by Tasks and Cardinalities





- A plan is a recipe for achieving a goal or maintaining a condition
- Consisting of *states* and *transitions* between them
- States contain Behaviours and Plantypes
- Initial states are tagged by Tasks and Cardinalities
- Annotated by Pre-, Post-, and Runtime Conditions







**X** X

|                       |               |                    |                     | VERTEILTE SYSTEME |
|-----------------------|---------------|--------------------|---------------------|-------------------|
| Introduction<br>00000 | Vision<br>000 | Worldmodel<br>0000 | Teamwork<br>0000000 | Summary<br>00     |
| Plant                 | vpes          |                    |                     |                   |

- ◊ A Plantype is a set of plans
- Provides a nondeterministic choice

|              |        |            | VERTEILTI | E SYSTEME |
|--------------|--------|------------|-----------|-----------|
| Introduction | Vision | Worldmodel | Teamwork  | Summary   |
| 00000        | 000    | 0000       | 0000000   | 00        |



- ◊ A Plantype is a set of plans
- Provides a nondeterministic choice

#### Example

Let Plantype *Play* contain *Defend* and *Attack*.





### Plan Hierachy

Plans, States, and Plantypes span a (finite) tree structure:



#### zxample

- Tackle occurs in a state in Defend
- Hence Tackle is a plan possibly executed in Defend

|              |        |            | VE        | ERTELLTE SYSTEME |
|--------------|--------|------------|-----------|------------------|
| Introduction | Vision | Worldmodel | Teamwork  | Summary          |
| 00000        | 000    | 0000       | 000000000 | 00               |

- A task allocation is
  - $\diamond\,$  computed locally by each agent
  - acted upon before any communication takes place
  - ◊ assigning all relevant agents to a plan p in a given plantype P, such that adopting the allocation will:

|              |        |            | VERTEILTI | E SYSTEME |
|--------------|--------|------------|-----------|-----------|
| Introduction | Vision | Worldmodel | Teamwork  | Summary   |
| 00000        | 000    | 0000       | 00000000  | 00        |

- A task allocation is
  - computed locally by each agent
  - acted upon before any communication takes place
  - assigning all relevant agents to a plan p in a given plantype P, such that adopting the allocation will:
    - Satisfy plan cardinalities

|              |        |            | VERTEILT | E SYSTEME |
|--------------|--------|------------|----------|-----------|
| Introduction | Vision | Worldmodel | Teamwork | Summary   |
| 00000        | 000    | 0000       | 00000000 | 00        |

- A task allocation is
  - computed locally by each agent
  - acted upon before any communication takes place
  - assigning all relevant agents to a plan p in a given plantype P, such that adopting the allocation will:
    - Satisfy plan cardinalities
    - Satisfy plan conditions

|              |        |            | VERTEILT | E SYSTEME |
|--------------|--------|------------|----------|-----------|
| Introduction | Vision | Worldmodel | Teamwork | Summary   |
| 00000        | 000    | 0000       | 00000000 | 00        |

A task allocation is

- computed locally by each agent
- acted upon before any communication takes place
- ◊ assigning all relevant agents to a plan p in a given plantype P, such that adopting the allocation will:
  - Satisfy plan cardinalities
  - Satisfy plan conditions
  - Not violate consistency constraints (e.g., an agent can take on only one task within a plan)

XX

|              |        |            | VERTEILT | E SYSTEME |
|--------------|--------|------------|----------|-----------|
| Introduction | Vision | Worldmodel | Teamwork | Summary   |
| 00000        | 000    | 0000       | 00000000 | 00        |

A task allocation is

- computed locally by each agent
- acted upon before any communication takes place
- assigning all relevant agents to a plan p in a given plantype P, such that adopting the allocation will:
  - Satisfy plan cardinalities
  - Satisfy plan conditions
  - Not violate consistency constraints (e.g., an agent can take on only one task within a plan)
  - Maximise the plan's utility

XX



So far, we were limited to an essentially *propositional* language.

 Expressivity: Propositional ALICA is as expressive as finite-state automata.



So far, we were limited to an essentially *propositional* language.

 Expressivity: Propositional ALICA is as expressive as finite-state automata.



### **General Alica**

So far, we were limited to an essentially propositional language.

- Expressivity: Propositional ALICA is as expressive as finite-state automata.
- Reusability: No distinction between algorithm and goal in behaviours.



### **General Alica**

So far, we were limited to an essentially propositional language.

- Expressivity: Propositional ALICA is as expressive as finite-state automata.
- Reusability: No distinction between algorithm and goal in behaviours.

#### Many behaviours for (almost) the same problems

CornerOppPosBlockGoal, CornerPosLongReceiver, ThrowInOppPosBlockSide, GoalKickPosSecondDefend,...



Introduction 00000 Worldmodel

Teamwork

Summary

### **General Alica**



#### Goals:

- Computational Effort
- Noisiness
- Coordination

A ROS-based framework for collaborative robot teams



Worldmodel

Teamwork

Summary

### **General Alica**



#### Goals:

- Computational Effort
- Noisiness
- Coordination

#### Solution:

- Declerative variable definition for plans/behaviours
- Distributed constraint solver for coordination



### Summary

- An expressive language for modelling teamwork
- Allows for swift reaction to changing situations by individual agents
- Robust against communication issues





Introduction 00000 Visio

Worldmodel

Teamwork 00000000 Summary

## Thank you for your attention!



Any questions?

A ROS-based framework for collaborative robot teams

Andreas Witsch

Slide 27 of 27