
9th November 2012

THE FUTURE OF PAST
PERSISTENCE MODELS
NOVOS PROJECT

Jana Traue



OUTLINE

1. Past Persistence Models

2. NOVOS

3. The Future

2



OUTLINE

1. Past Persistence Models

2. NOVOS

3. The Future

1 ·Past Persistence Models 3



PERSISTENCE

Definition

data outlives its creating process

data is reused

Today

(memory mapped) files

data persistent after sync operation

file system assures consistency of meta data

1 ·Past Persistence Models 4



OVERVIEW

Persistence

Orthogonal
Persistence

Persistent
Variables

Language-level
Persistence

Manually
Managed

Persistence

Persistence
by Reachability

Persistence
by Location

Persistence
by Declaration

1 ·Past Persistence Models 5



OVERVIEW

Persistence

Orthogonal
Persistence

Persistent
Variables

Language-level
Persistence

Manually
Managed

Persistence

Persistence
by Reachability

Persistence
by Location

Persistence
by Declaration

1 ·Past Persistence Models 6



OVERVIEW

Persistence

Orthogonal
Persistence

Persistent
Variables

Language-level
Persistence

Manually
Managed

Persistence

Persistence
by Reachability

Persistence
by Location

Persistence
by Declaration

1 ·Past Persistence Models 7



PERSISTENCE BY REACHABILITY

Napier88:

type person is structure (name,
address : string)

let ps = PS()

project ps as X onto
person:
begin
X(name) := ’Ronald Morrison’
X(address) := ’St Andrews’
end
default: {} ! This is the catch

all and ps has type any
here

address
book

ronald
jane

toby

persistent

volatile

1 ·Past Persistence Models 8



PERSISTENCE BY LOCATION

ObjectStore:

main() {
// declare a database and an ’

entrypoint’ into it
database* db;
persistent(db) Adressbook*

book1;
// open the database
db = database::open(’/books/

book1’);
// start a transaction
transaction::begin();
Person* jane = new (db) Person

(’Jane’);
book1->add_person(jane);
// commit all changes to the

database
transaction::commit();

}

address
book

ronald
jane

toby

persistent

volatile

1 ·Past Persistence Models 9



PERSISTENCE BY DECLARATION

E:
dbclass Person {...};
dbclass Addressbook: collection[

Person];
persistent Addressbook book1;
Person* ronald = new (book1)

Person(’Ronald’);
Person* toby = new (book1,

ronald) Person(’Toby’);

address
book

ronald
toby

jane

persistent

volatile

1 ·Past Persistence Models 10



SUMMARY

Manually Managed Persistence

− explicity conversion

− error prone

Orthogonal Persistence

+ data lives as long as it is referenced

− even volatile data is preserved

Persistent Variables

− error prone or

− reachability detection

1 ·Past Persistence Models 11



OUTLINE

1. Past Persistence Models

2. NOVOS

3. The Future

2 ·NOVOS 12



NON-VOLATILE MEMORY

Properties

byte-addressable

non-volatile

access latency comparable to DRAM

CPUCache

NVRAM DRAM

Disk

2 ·NOVOS 13



NVRAM USE CASE 1

NVRAM as a Fast Disk

block abstraction

lower access latency

persistence limited to files

CPUCache

non-volatilevolatile

2 ·NOVOS 14



NVRAM USE CASE 2

NVRAM as an Object Store

completely disk-less

reuse data structures

! power outages⇒ transactions?

CPUCache

reused

2 ·NOVOS 15



STORAGE CLASSES

Storage Class Requirements Examples

Recoverable transactional object store/file
semantics system meta data

Resettable corruption file system
detection name cache

Transient reset on state of
boot device drivers

Volatile reset on keys
power loss

2 ·NOVOS 16



OUTLINE

1. Past Persistence Models

2. NOVOS

3. The Future

3 ·The Future 17



PERSISTENCE MODELS APPLIED I

Orthogonal Persistence Manually Managed

recoverable

resettable

transient

volatile

3 ·The Future 18



PERSISTENCE MODELS APPLIED II

Persistence by Reachability Persistence by Location

recoverable

resettable

transient

volatile

3 ·The Future 19



THE END

Questions?

3 ·The Future 20


	Past Persistence Models
	NOVOS
	The Future

