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PERSISTENCE

Definition

data outlives its creating process

data is reused

Today

(memory mapped) files

data persistent after sync operation

file system assures consistency of meta data
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PERSISTENCE BY REACHABILITY

Napier88:

type person is structure (name,
address : string)

let ps = PS()

project ps as X onto
person:
begin
X(name) := ’Ronald Morrison’
X(address) := ’St Andrews’
end
default: {} ! This is the catch

all and ps has type any
here
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PERSISTENCE BY LOCATION

ObjectStore:

main() {
// declare a database and an ’

entrypoint’ into it
database* db;
persistent(db) Adressbook*

book1;
// open the database
db = database::open(’/books/

book1’);
// start a transaction
transaction::begin();
Person* jane = new (db) Person

(’Jane’);
book1->add_person(jane);
// commit all changes to the

database
transaction::commit();

}

address
book

ronald
jane

toby

persistent

volatile

1 ·Past Persistence Models 9



PERSISTENCE BY DECLARATION

E:
dbclass Person {...};
dbclass Addressbook: collection[

Person];
persistent Addressbook book1;
Person* ronald = new (book1)

Person(’Ronald’);
Person* toby = new (book1,

ronald) Person(’Toby’);

address
book

ronald
toby

jane

persistent

volatile
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SUMMARY

Manually Managed Persistence

− explicity conversion

− error prone

Orthogonal Persistence

+ data lives as long as it is referenced

− even volatile data is preserved

Persistent Variables

− error prone or

− reachability detection
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NON-VOLATILE MEMORY

Properties

byte-addressable

non-volatile

access latency comparable to DRAM

CPUCache

NVRAM DRAM

Disk
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NVRAM USE CASE 1

NVRAM as a Fast Disk

block abstraction

lower access latency

persistence limited to files

CPUCache

non-volatilevolatile
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NVRAM USE CASE 2

NVRAM as an Object Store

completely disk-less

reuse data structures

! power outages⇒ transactions?

CPUCache

reused
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STORAGE CLASSES

Storage Class Requirements Examples

Recoverable transactional object store/file
semantics system meta data

Resettable corruption file system
detection name cache

Transient reset on state of
boot device drivers

Volatile reset on keys
power loss
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PERSISTENCE MODELS APPLIED I

Orthogonal Persistence Manually Managed

recoverable

resettable

transient

volatile
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PERSISTENCE MODELS APPLIED II

Persistence by Reachability Persistence by Location

recoverable

resettable

transient

volatile
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THE END

Questions?
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