
Formale Verifikation von SOA-basierten

automotiven Software-Systemen

Gesellschaft für Informatik
Fachgruppe Betriebssysteme

ADAPT

Christian Schwarz
Universität Koblenz-Landau

Marco Wagner
Hochschule Heilbronn

8.11.12 Herbsttreffen in Koblenz

Montag, 12. November 12

 Christian Schwarz

• verteilt auf verschiedene Entitäten
• Systemarchitektur ändert sich zur Laufzeit

Beispiele:

• Car-to-Car Kommunikation
• Car-to-Infrastructure Kommunikation
• FAS für Fahrzeugespanne

Verteilte Fahrer-Assistenz-Systeme

2

• statische Software- und Systemarchitektur
• Architektur zum Design-Zeitpunkt bekannt

Beispiele:

• Spurerkennung
• Einpark-Assistent

Quelle: Daimler AG

Quelle: car-to-car.org

Heutige Fahrer-Assistenz-Systeme

Zukünftige Fahrer-Assistenz-Systeme

Montag, 12. November 12

 Christian Schwarz

Fallbeispiel

3

• Assistenz-Logik berechnet zukünftigen Pfad

• Präsentation dieses Pfades über eine Mensch-Maschine-
Schnittstelle (Overlay mit Rückfahrkamera-Bild)

• Sensorik für Lenk- und Einknickwinkel

FAS für das Rückwärtsfahren mit Anhänger

Montag, 12. November 12

 Christian Schwarz

Fallbeispiel: Komponenten

4

• Sensoren:

• Lenkwinkelsensor

• Einknickwinkelsensor

• Rückfahrkamera

• Assistenzlogik: Berechnung der Trajektorien für

• Anhänger

• Fahrzeuggespann

• Ausgabe:

• Overlay

• Video-Ausgabe

FAS für das Rückwärtsfahren mit Anhänger

Montag, 12. November 12

 Christian Schwarz

• Automatische Anpassung der Software im
Falle einer Systemänderung

Service Orientation

5

• Erleichtert den Umgang mit Verteiltheit
und Heterogenität und verbessert
Wiederverwendbarkeit

• Implementiert Kapelung mit definierten
Schnittstellen

• Erlaubt Dienste zu finden

Service Orientation

Automatische Re-Orchestrierung

Service Broker

Service
Consumer

Client

Service
Provider

Service

Service
Contract
- ...
- ...
- ...

fin
de

t

veröffendlicht

interagieren

Quelle: w3c.org

Montag, 12. November 12

 Christian Schwarz

Service

Service

Client

Client

Fallbeispiel: Service-Orientiertes Modell

6

Service Overlay Client

Service

Service
Einknickwinkel

-Sensor
Client

Berechne Trajektorie
Anhänger

Service
Lenkwinkel-

Sensor

Client

Client Berechne Trajektorie
Gesamt

Rückfahr-
Kamera

Service

Video Out

Montag, 12. November 12

 Christian Schwarz

• Vollautomatisches Verfahren

• Überprüft, ob eine gegebene Spezifikation
bestimmte, in Temporal-Logik gegebene,
Eigenschaften hat (Sicherheit, Deadlock-Free..)

• Generiert im Fehlerfall ein Gegenbeispiel

Formale Verifikation

7

• Sicherheitskritische Systeme müssen validiert
werden

• Insbesondere sollten sicherheitskritische Systeme,
die zur Laufzeit erzeugt werden zur Laufzeit
validiert werden.

Verifikation

Model Checking

Montag, 12. November 12

 Christian Schwarz

Temporale Konsistenz als Sicherheitsbedingung

8

Ein System ist temporal konsistent bezüglich

gdw. seine Ausgaben nicht auf Eingaben
basieren, die älter sind als .

Temporale Konsistenz

�t

�t

Die vorgestellte Rückfahrassistenz ist sicher, wenn sie
temporal konsistenz bezüglich 100ms ist.

Fallbeispiel: eine Sicherheitsbedingung

Montag, 12. November 12

 Christian Schwarz

Service

Service

Client

Client

Fallbeispiel

9

Service Overlay Client

Service

Service
Einknickwinkel

-Sensor
Client

Berechne Trajektorie
Anhänger

Service
Lenkwinkel-

Sensor

Client

Client Berechne Trajektorie
Gesamt

Rückfahr-
Kamera

Service

Video Out

Montag, 12. November 12

 Christian Schwarz

Fallbeispiel: SoaML

10

Service

Service

Client

ClientService Overlay Client

<<Interface>>
GetTrajectoryComb

<<Interface>>
GetRearViewRequest

<<ServiceInterface>>
OverlayService

<<Capability>>
CalcOverlay

<<use>>

<<Expose>><<use>>

Consumer:
CalcOverlayRequest

OverlayService:
CalcOverlay

• UML-Profil zur Spezifikation von
Service-Orientierter Software

• Beinhaltet unter anderem Artefakte
für Interfaces und Contracts

SoaML

min: 1ms
max: 4ms

min: 1ms
max: 4ms

min: 7ms
max: 22ms

Montag, 12. November 12

 Christian Schwarz

• kontinuierliche Zustandsübergänge
• Differentialgleichungen

Hybride Systeme

11

• Diskrete Zustandsübergänge
• Zustandsautomaten, Aktvitätsdiagramme, ...

Quelle: car-to-car.org

Diskrete Systeme

Physikalische Systeme

v̇ = g � kv2

m

• kontinuierliche und diskrete Zustandsübergänge
• Hybride Automaten

Hybride Systeme

 Christian Schwarz9

I : x � 0

F : v̇ = g � kv

2

m

ẋ = v

fallend

x0 = 3
v0 = 0

I : x � 0

F : v̇ = g � kv

2

m

ẋ = v

steigend
. . .

x = 0
x

0 = x

v

0 = �↵ · v

Donnerstag, 8. November 12

Montag, 12. November 12

 Christian Schwarz

Hybride Automaten

12

I : x � 0

F : v̇ = g � kv

2

m

ẋ = v

fallend
x

v

Fluss

Invariante

Sprung

x0 = 3
v0 = 0

I : x � 0

F : v̇ = g � kv

2

m

ẋ = v

steigend
. . .

x = 0
x

0 = x

v

0 = �↵ · v

sync

Montag, 12. November 12

 Christian Schwarz

Transformation of Contracts

13

Consumer:
CalcOverlayRequest

OverlayService:
CalcOverlay

min: 1ms
max: 4ms

min: 1ms
max: 4ms

min: 7ms
max: 22ms

10 Christian Schwarz et al.

idle

send request

F: ṫ = 1
Ȧc = 1

I: t  4

waiting

F: Ȧc = 1

processing

F: ṫ = 1
Ȧc = 1

I: t  22

send reply

F: ṫ = 1
Ȧc = 1

I: t  4

t0 = 0 ^A0
c = 0

reqc t � 1

actp

finct0 = 0 ^A0
c = Ac +Ap

t � 7 ^ t0 = 0

t � 1repc

Fig. 6: Transformation of the ServiceContract of the Overlay Service (Fig. 4)

be event-triggered with an additional component sending requests periodically
and serving as a bu↵er for the receiving process.

Due to the lack of formal semantics of SoaML models, we have to make
certain assumptions on the behavior of the specified services. We assume that
whenever a service is executed (this might be event- or time-triggered), as a
first step, it gathers all data needed to fulfill its task. Then there is some data
processing step that produces the output. As a last step, it will send its reply.

In the following, we take a look at the artifacts of the SoaML models and
how they are transformed. The ServiceInterface of a service describes which
data (resp. other services) is needed to execute the task. Fig. 5 shows the trans-
formation of the interface of the Overlay Service. The service is idle until it
is activated, modelled by the synchronization label actp. Then it attempts to
gather its input data. We decided to model this by an indeterministic choice
of all needed inputs. This is valid because the system is safe if and only if all
possible executions are safe – including the worst choice. Next, the service might
have to wait for an answer of the queried service. After receiving the answer, it
signals (via finp) that the data processing may begin.

The ServiceContract determines the service type of the providing service.
Moreover, it describes the timely behavior of both, the communication and the
data processing step. Fig. 6 shows the transformation of the Overlay Contract.
The contract automaton is idle until the date provided by the contract is needed
(signaled via reqc). Then, it simulates the time needed to send the request. Next,
it signals (via actp) to start the gathering of inputs and waits for that to finish
(finc). Afterwards, the time needed to generate the output and to send it to the
requester is simulated. Finally, it signals that the requesting interface automaton
can continue (repc).

Montag, 12. November 12

 Christian Schwarz

Transformation of Interfaces

14

<<Interface>>
GetTrajectoryComb

<<Interface>>
GetRearViewRequest

<<ServiceInterface>>
OverlayService

<<Capability>>
CalcOverlay

<<use>>

<<Expose>><<use>>

Formal Verification of SOA-based Automotive Software Systems 9

idle

F: ṫ = 1
I: t = 0

waiting

F: ṫ = 1
Ȧp = 0

I: t = 0

Ap = 0

actp

reqRV reqTTC

A0
p = ARV

repRV

A0
p = ATTC

repTTC

finp

Fig. 5: Transformation of ServiceInterface of the Overlay Service (Fig. 2)
reqRV, reqTTC denotes requests to the services ‘RearView’ and ‘TrajTrailComb’
and repRV, repTTC the corresponding answers.

4 Transformation and Verification of SoaML models

4.1 Transformation

Given these annotated models, we will now describe how to transform them
automatically into hybrid automata, which can be used for model checking.
The transformation presented here is modular – each component of the SoaML
model is transformed independently from the others. This allows a re-use of
already transformed components and on the other hand enhances traceability if
the verification attempt should fail.

We identified two types of services in our application domain, namely event-
triggered and time-triggered services. The communication of event-triggered ser-
vices is synchronous; a service requesting the data of such a service sends a re-
quest and waits for it to send a reply. This is the common service type in web
services. For real-time systems this might not be optimal due to the additional
delay caused by sending requests.

Time-triggered services on the other hand are triggered periodically and send
their output to a bu↵er independently of a request. Periodic processes are stan-
dard in real-time systems engineering as they have superior timely behavior. On
the other hand, they might result in unnecessary computation if the data is not
actually needed.

We believe that being able to handle both service types in one architecture
is beneficial, as it allows to handle both – sporadic and periodical events in an
optimal way. In our transformation approach, we decided to treat both service
types as uniform as possible. Basically, we treat time-triggered components to

act_overlay

fin_overlay

Montag, 12. November 12

 Christian Schwarz

Verifikation

15

Formal Verification of SOA-based Automotive Software Systems 9

idle

F: ṫ = 1
I: t = 0

waiting

F: ṫ = 1
Ȧp = 0

I: t = 0

Ap = 0

actp

reqRV reqTTC

A0
p = ARV

repRV

A0
p = ATTC

repTTC

finp

Fig. 5: Transformation of ServiceInterface of the Overlay Service (Fig. 2)
reqRV, reqTTC denotes requests to the services ‘RearView’ and ‘TrajTrailComb’
and repRV, repTTC the corresponding answers.

4 Transformation and Verification of SoaML models

4.1 Transformation

Given these annotated models, we will now describe how to transform them
automatically into hybrid automata, which can be used for model checking.
The transformation presented here is modular – each component of the SoaML
model is transformed independently from the others. This allows a re-use of
already transformed components and on the other hand enhances traceability if
the verification attempt should fail.

We identified two types of services in our application domain, namely event-
triggered and time-triggered services. The communication of event-triggered ser-
vices is synchronous; a service requesting the data of such a service sends a re-
quest and waits for it to send a reply. This is the common service type in web
services. For real-time systems this might not be optimal due to the additional
delay caused by sending requests.

Time-triggered services on the other hand are triggered periodically and send
their output to a bu↵er independently of a request. Periodic processes are stan-
dard in real-time systems engineering as they have superior timely behavior. On
the other hand, they might result in unnecessary computation if the data is not
actually needed.

We believe that being able to handle both service types in one architecture
is beneficial, as it allows to handle both – sporadic and periodical events in an
optimal way. In our transformation approach, we decided to treat both service
types as uniform as possible. Basically, we treat time-triggered components to

Formal Verification of SOA-based Automotive Software Systems 9

idle

F: ṫ = 1
I: t = 0

waiting

F: ṫ = 1
Ȧp = 0

I: t = 0

Ap = 0

actp

reqRV reqTTC

A0
p = ARV

repRV

A0
p = ATTC

repTTC

finp

Fig. 5: Transformation of ServiceInterface of the Overlay Service (Fig. 2)
reqRV, reqTTC denotes requests to the services ‘RearView’ and ‘TrajTrailComb’
and repRV, repTTC the corresponding answers.

4 Transformation and Verification of SoaML models

4.1 Transformation

Given these annotated models, we will now describe how to transform them
automatically into hybrid automata, which can be used for model checking.
The transformation presented here is modular – each component of the SoaML
model is transformed independently from the others. This allows a re-use of
already transformed components and on the other hand enhances traceability if
the verification attempt should fail.

We identified two types of services in our application domain, namely event-
triggered and time-triggered services. The communication of event-triggered ser-
vices is synchronous; a service requesting the data of such a service sends a re-
quest and waits for it to send a reply. This is the common service type in web
services. For real-time systems this might not be optimal due to the additional
delay caused by sending requests.

Time-triggered services on the other hand are triggered periodically and send
their output to a bu↵er independently of a request. Periodic processes are stan-
dard in real-time systems engineering as they have superior timely behavior. On
the other hand, they might result in unnecessary computation if the data is not
actually needed.

We believe that being able to handle both service types in one architecture
is beneficial, as it allows to handle both – sporadic and periodical events in an
optimal way. In our transformation approach, we decided to treat both service
types as uniform as possible. Basically, we treat time-triggered components to

Formal Verification of SOA-based Automotive Software Systems 9

idle

F: ṫ = 1
I: t = 0

waiting

F: ṫ = 1
Ȧp = 0

I: t = 0

Ap = 0

actp

reqRV reqTTC

A0
p = ARV

repRV

A0
p = ATTC

repTTC

finp

Fig. 5: Transformation of ServiceInterface of the Overlay Service (Fig. 2)
reqRV, reqTTC denotes requests to the services ‘RearView’ and ‘TrajTrailComb’
and repRV, repTTC the corresponding answers.

4 Transformation and Verification of SoaML models

4.1 Transformation

Given these annotated models, we will now describe how to transform them
automatically into hybrid automata, which can be used for model checking.
The transformation presented here is modular – each component of the SoaML
model is transformed independently from the others. This allows a re-use of
already transformed components and on the other hand enhances traceability if
the verification attempt should fail.

We identified two types of services in our application domain, namely event-
triggered and time-triggered services. The communication of event-triggered ser-
vices is synchronous; a service requesting the data of such a service sends a re-
quest and waits for it to send a reply. This is the common service type in web
services. For real-time systems this might not be optimal due to the additional
delay caused by sending requests.

Time-triggered services on the other hand are triggered periodically and send
their output to a bu↵er independently of a request. Periodic processes are stan-
dard in real-time systems engineering as they have superior timely behavior. On
the other hand, they might result in unnecessary computation if the data is not
actually needed.

We believe that being able to handle both service types in one architecture
is beneficial, as it allows to handle both – sporadic and periodical events in an
optimal way. In our transformation approach, we decided to treat both service
types as uniform as possible. Basically, we treat time-triggered components to

Formal Verification of SOA-based Automotive Software Systems 9

idle

F: ṫ = 1
I: t = 0

waiting

F: ṫ = 1
Ȧp = 0

I: t = 0

Ap = 0

actp

reqRV reqTTC

A0
p = ARV

repRV

A0
p = ATTC

repTTC

finp

Fig. 5: Transformation of ServiceInterface of the Overlay Service (Fig. 2)
reqRV, reqTTC denotes requests to the services ‘RearView’ and ‘TrajTrailComb’
and repRV, repTTC the corresponding answers.

4 Transformation and Verification of SoaML models

4.1 Transformation

Given these annotated models, we will now describe how to transform them
automatically into hybrid automata, which can be used for model checking.
The transformation presented here is modular – each component of the SoaML
model is transformed independently from the others. This allows a re-use of
already transformed components and on the other hand enhances traceability if
the verification attempt should fail.

We identified two types of services in our application domain, namely event-
triggered and time-triggered services. The communication of event-triggered ser-
vices is synchronous; a service requesting the data of such a service sends a re-
quest and waits for it to send a reply. This is the common service type in web
services. For real-time systems this might not be optimal due to the additional
delay caused by sending requests.

Time-triggered services on the other hand are triggered periodically and send
their output to a bu↵er independently of a request. Periodic processes are stan-
dard in real-time systems engineering as they have superior timely behavior. On
the other hand, they might result in unnecessary computation if the data is not
actually needed.

We believe that being able to handle both service types in one architecture
is beneficial, as it allows to handle both – sporadic and periodical events in an
optimal way. In our transformation approach, we decided to treat both service
types as uniform as possible. Basically, we treat time-triggered components to

10 Christian Schwarz et al.

idle

send request

F: ṫ = 1
Ȧc = 1

I: t  4

waiting

F: Ȧc = 1

processing

F: ṫ = 1
Ȧc = 1

I: t  22

send reply

F: ṫ = 1
Ȧc = 1

I: t  4

t0 = 0 ^A0
c = 0

reqc t � 1

actp

finct0 = 0 ^A0
c = Ac +Ap

t � 7 ^ t0 = 0

t � 1repc

Fig. 6: Transformation of the ServiceContract of the Overlay Service (Fig. 4)

be event-triggered with an additional component sending requests periodically
and serving as a bu↵er for the receiving process.

Due to the lack of formal semantics of SoaML models, we have to make
certain assumptions on the behavior of the specified services. We assume that
whenever a service is executed (this might be event- or time-triggered), as a
first step, it gathers all data needed to fulfill its task. Then there is some data
processing step that produces the output. As a last step, it will send its reply.

In the following, we take a look at the artifacts of the SoaML models and
how they are transformed. The ServiceInterface of a service describes which
data (resp. other services) is needed to execute the task. Fig. 5 shows the trans-
formation of the interface of the Overlay Service. The service is idle until it
is activated, modelled by the synchronization label actp. Then it attempts to
gather its input data. We decided to model this by an indeterministic choice
of all needed inputs. This is valid because the system is safe if and only if all
possible executions are safe – including the worst choice. Next, the service might
have to wait for an answer of the queried service. After receiving the answer, it
signals (via finp) that the data processing may begin.

The ServiceContract determines the service type of the providing service.
Moreover, it describes the timely behavior of both, the communication and the
data processing step. Fig. 6 shows the transformation of the Overlay Contract.
The contract automaton is idle until the date provided by the contract is needed
(signaled via reqc). Then, it simulates the time needed to send the request. Next,
it signals (via actp) to start the gathering of inputs and waits for that to finish
(finc). Afterwards, the time needed to generate the output and to send it to the
requester is simulated. Finally, it signals that the requesting interface automaton
can continue (repc).

10 Christian Schwarz et al.

idle

send request

F: ṫ = 1
Ȧc = 1

I: t  4

waiting

F: Ȧc = 1

processing

F: ṫ = 1
Ȧc = 1

I: t  22

send reply

F: ṫ = 1
Ȧc = 1

I: t  4

t0 = 0 ^A0
c = 0

reqc t � 1

actp

finct0 = 0 ^A0
c = Ac +Ap

t � 7 ^ t0 = 0

t � 1repc

Fig. 6: Transformation of the ServiceContract of the Overlay Service (Fig. 4)

be event-triggered with an additional component sending requests periodically
and serving as a bu↵er for the receiving process.

Due to the lack of formal semantics of SoaML models, we have to make
certain assumptions on the behavior of the specified services. We assume that
whenever a service is executed (this might be event- or time-triggered), as a
first step, it gathers all data needed to fulfill its task. Then there is some data
processing step that produces the output. As a last step, it will send its reply.

In the following, we take a look at the artifacts of the SoaML models and
how they are transformed. The ServiceInterface of a service describes which
data (resp. other services) is needed to execute the task. Fig. 5 shows the trans-
formation of the interface of the Overlay Service. The service is idle until it
is activated, modelled by the synchronization label actp. Then it attempts to
gather its input data. We decided to model this by an indeterministic choice
of all needed inputs. This is valid because the system is safe if and only if all
possible executions are safe – including the worst choice. Next, the service might
have to wait for an answer of the queried service. After receiving the answer, it
signals (via finp) that the data processing may begin.

The ServiceContract determines the service type of the providing service.
Moreover, it describes the timely behavior of both, the communication and the
data processing step. Fig. 6 shows the transformation of the Overlay Contract.
The contract automaton is idle until the date provided by the contract is needed
(signaled via reqc). Then, it simulates the time needed to send the request. Next,
it signals (via actp) to start the gathering of inputs and waits for that to finish
(finc). Afterwards, the time needed to generate the output and to send it to the
requester is simulated. Finally, it signals that the requesting interface automaton
can continue (repc).

Beweis

Gegenbeispiel

oder
Standard-

Modelchecking-Tools

Montag, 12. November 12

 Christian Schwarz

Zukünftige Arbeiten

16

• Komplexere Sicherheitsbedingungen

• Ausnutzung von Gegenbeispielen für die
Orchestrierung

Montag, 12. November 12

 Christian Schwarz

Vielen Dank für Ihre
Aufmerksamkeit

17

Montag, 12. November 12

