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Overview: Sloth

Main Idea

When designing an embedded kernel, embrace hardware peculiarities
instead of blindly abstracting from them, in order to optimize
non-functional kernel properties such as latency, memory footprint,
and priority management.
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Motivation: Rate-Monotonic Priority Inversion

m  Problem:
high-priority threads disturbed by low-priority ISRs

m Sloth approach:
threads in the same priority space as ISRs; i.e., threads as interrupts
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Sloth: Threads as Interrupts

m ldea: implement threads as
interrupt handlers

m  Thread activation by interrupt requests

B Let interrupt subsystem do the scheduling and
dispatching work

m  Applicable to priority-based real-time systems

m  Advantage: small, fast kernel with unified
control-flow abstraction
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OSEK and AUTOSAR

m  Standards developed by automotive industry
B AUTOSAR is the successor of OSEK
m  Statically configured, event-triggered OS

m  Tasks scheduled and dispatched by OS scheduler
m  Category-2 ISRs can call system services, need kernel sync

m  Category-1 ISRs cannot call system services, do not need sync

B Resources for application sync, with stack-based priority-ceiling
protocol

B Alarms configured to activate task or execute callback upon expiry
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Sloth Design
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m  Platform must support interrupt priorities
and interrupts requests from software for synchronous task activation

0 Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching




Example Control Flow
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Design Implications

B Concise kernel design and implementation
(minimal system: < 200 LoC, < 700 bytes)

m  Single control-flow abstraction for tasks, ISRs category 1/2, callbacks
= handling oblivious to how it was triggered (by hardware or software)

m  Unified priority space for tasks and ISRs,
no rate-monotonic priority inversion

B Straight-forward synchronization by altering CPU priority

= Resources with ceiling priority (also for ISRs!)
= Non-preemptive sections with RES_SCHEDULER (highest task priority)

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 8




Implementations

Small kernel makes porting efforts easy

Implementations for several platforms

Infineon TriCore (widely used in automotive systems)
ARM Cortex-M3

Freescale MPC56xx (embedded Power Architecture)
Intel Atom

Configuring an application includes

= mapping tasks to interrupt sources
= assigning priorities to each interrupt source

Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching




Performance Evaluation: Methodology

B Evaluation of task-related system calls:

= Task activation
= Task termination
= Task acquiring/releasing resource

m Performance of other system calls and application similar to
traditional systems

m  Comparison with performance of commercial OSEK implementation
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Performance Evaluation: Results
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Performance Evaluation: Results

m ARM Cortex-M3
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Further Work: The Sloth Family

Sloth [RTSS "09]
= support for basic tasks (OSEK BCC1)

Sleepy Sloth [RTSS '11]
= support for extended tasks (OSEK ECC1)

Sloth on Time [RTSS '12]

= time-triggered execution using hardware timer arrays
(OSEKtime, AUTOSAR schedule tables)

Slothful Linux

= hybrid system running Linux and Sloth in parallel on the same hardware
Multi-core Sloth

= running on multiple cores (AUTOSAR multi-core OS specification)
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Summary

m  Sloth implements tasks by using IRQs and interrupt handlers on
commodity hardware platforms

= Makes tasks a low-overhead abstraction
= Avoids rate-monotonic priority inversion
= Keeps software footprint low

http://wwwd.cs.fau.de/Research/Sloth
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