
Sloth:
Efficient Hardware-based Task Scheduling and

Dispatching for the Automotive Domain

Rainer Müller, Wanja Hofer, Fabian Scheler,
Daniel Lohmann, Wolfgang Schröder-Preikschat

9. November 2012



Overview: Sloth

Main Idea
When designing an embedded kernel, embrace hardware peculiarities
instead of blindly abstracting from them, in order to optimize
non-functional kernel properties such as latency, memory footprint,
and priority management.

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 2



Motivation: Rate-Monotonic Priority Inversion

Problem:
high-priority threads disturbed by low-priority ISRs

Sloth approach:
threads in the same priority space as ISRs; i.e., threads as interrupts

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 3



Sloth: Threads as Interrupts

Idea: implement threads as
interrupt handlers
Thread activation by interrupt requests

Let interrupt subsystem do the scheduling and
dispatching work
Applicable to priority-based real-time systems
Advantage: small, fast kernel with unified
control-flow abstraction

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 4



OSEK and AUTOSAR

Standards developed by automotive industry
AUTOSAR is the successor of OSEK
Statically configured, event-triggered OS

Tasks scheduled and dispatched by OS scheduler
Category-2 ISRs can call system services, need kernel sync
Category-1 ISRs cannot call system services, do not need sync

Resources for application sync, with stack-based priority-ceiling
protocol
Alarms configured to activate task or execute callback upon expiry

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 5



Sloth Design

IRQ Source
Task1

IRQ Source
ExtTask1

prio=1

request

req IE

IRQ Source
ISR2

prio=2

request

IRQ Source
Task3

prio=3

request

IRQ Source
Task4

IRQ Source
ExtTask4

prio=4

request

req IE

Hardware
Periphery

Timer
System

HW IRQ

Alarm Exp.

IRQ
Arbi-
tration
Unit

CPU

curprio=X

ActivateTask(Task1)

IRQ Vector
Table

task1()

isr2()

task3()

task4()

prol1()

isr2()

prol3()

prol4()

task1()

task3()

task4()

Task Stack

Stack ET1

Stack ET4

Platform must support interrupt priorities
and interrupts requests from software for synchronous task activation

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 6



Example Control Flow

CPU Prio Level

t

0

1

2

3

4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

init()

enable()

Task1

GetRes(Res1)

Task1
E
ISR2

RelRes(Res1)

ISR2

SetAlarm(Al1)

iret

Task1 Term()

idle()

Task4
E

Alarm1

Act(Task1)

Term()

Task1

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 7



Design Implications

Concise kernel design and implementation
(minimal system: < 200 LoC, < 700 bytes)

Single control-flow abstraction for tasks, ISRs category 1/2, callbacks
handling oblivious to how it was triggered (by hardware or software)

Unified priority space for tasks and ISRs,
no rate-monotonic priority inversion

Straight-forward synchronization by altering CPU priority
Resources with ceiling priority (also for ISRs!)
Non-preemptive sections with RES_SCHEDULER (highest task priority)

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 8



Implementations

Small kernel makes porting efforts easy

Implementations for several platforms
Infineon TriCore (widely used in automotive systems)
ARM Cortex-M3
Freescale MPC56xx (embedded Power Architecture)
Intel Atom

Configuring an application includes
mapping tasks to interrupt sources
assigning priorities to each interrupt source

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 9



Performance Evaluation: Methodology

Evaluation of task-related system calls:
Task activation
Task termination
Task acquiring/releasing resource

Performance of other system calls and application similar to
traditional systems

Comparison with performance of commercial OSEK implementation

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 10



Performance Evaluation: Results

Infineon TriCore

0

100

200

300

400

Cycles

Activate() Activate() Terminate() Chain() GetRes() ReleaseRes() ReleaseRes()

w/ dispatch w/ dispatch w/ dispatch w/ dispatch

Speedup ≈ 2x ≈ 4x ≈ 20x ≈ 5x ≈ 3x ≈ 8x ≈ 8x

Sloth

Commercial OSEK

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 11



Performance Evaluation: Results

ARM Cortex-M3

0

100

200

300

400

500

Cycles

Activate() Activate() Terminate() Chain() GetRes() ReleaseRes() ReleaseRes()

w/ dispatch w/ dispatch w/ dispatch w/ dispatch

Speedup ≈ 26x ≈ 13x ≈ 13x ≈ 8x ≈ 6x ≈ 6x ≈ 7x

Sloth

Arctic Core

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 12



Further Work: The Sloth Family

Sloth [RTSS ’09]
support for basic tasks (OSEK BCC1)

Sleepy Sloth [RTSS ’11]
support for extended tasks (OSEK ECC1)

Sloth on Time [RTSS ’12]
time-triggered execution using hardware timer arrays
(OSEKtime, AUTOSAR schedule tables)

Slothful Linux
hybrid system running Linux and Sloth in parallel on the same hardware

Multi-core Sloth
running on multiple cores (AUTOSAR multi-core OS specification)

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 13



Summary

Sloth implements tasks by using IRQs and interrupt handlers on
commodity hardware platforms

Makes tasks a low-overhead abstraction
Avoids rate-monotonic priority inversion
Keeps software footprint low

http://www4.cs.fau.de/Research/Sloth

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 14

http://www4.cs.fau.de/Research/Sloth


Bibliography

Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-Preikschat.
Sloth: Threads as interrupts.
In Theodore P. Baker, editor, Proceedings of the 30th IEEE Real-Time Systems
Symposium (RTSS 2009), pages 204–213, Los Alamitos, CA, USA, 2009.

Wanja Hofer, Daniel Lohmann, and Wolfgang Schröder-Preikschat.
Sleepy Sloth: Threads as interrupts as threads.
In Luis Almeida and Scott Brandt, editors, Proceedings of the 32nd IEEE Real-Time
Systems Symposium (RTSS 2011), pages 67–77, Los Alamitos, CA, USA, 2011.

Wanja Hofer, Daniel Danner, Ranier Müller, Fabian Scheler, Wolfgang
Schröder-Preikschat, and Daniel Lohmann.
Sloth on Time: Efficient hardware-based scheduling for time-triggered RTOS.
In Chenyang Lu, editor, Proceedings of the 33rd IEEE Real-Time Systems
Symposium (RTSS 2012), Los Alamitos, CA, USA, 2012.

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching


