Sloth:
Efficient Hardware-based Task Scheduling and
Dispatching for the Automotive Domain

Rainer Miiller, Wanja Hofer, Fabian Scheler,
Daniel Lohmann, Wolfgang Schréder-Preikschat

FRIEDRICH-ALEXANDER
UNIVERSITAT _
ERLANGEN-NURNBERG

9. November 2012

Overview: Sloth

Main Idea

When designing an embedded kernel, embrace hardware peculiarities
instead of blindly abstracting from them, in order to optimize
non-functional kernel properties such as latency, memory footprint,
and priority management.

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 2

Motivation: Rate-Monotonic Priority Inversion

m Problem:
high-priority threads disturbed by low-priority ISRs

m Sloth approach:
threads in the same priority space as ISRs; i.e., threads as interrupts

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 3

Sloth: Threads as Interrupts

m ldea: implement threads as
interrupt handlers

m Thread activation by interrupt requests

B Let interrupt subsystem do the scheduling and
dispatching work

m Applicable to priority-based real-time systems

m Advantage: small, fast kernel with unified
control-flow abstraction

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 4

OSEK and AUTOSAR

m Standards developed by automotive industry
B AUTOSAR is the successor of OSEK
m Statically configured, event-triggered OS

m Tasks scheduled and dispatched by OS scheduler
m Category-2 ISRs can call system services, need kernel sync

m Category-1 ISRs cannot call system services, do not need sync

B Resources for application sync, with stack-based priority-ceiling
protocol

B Alarms configured to activate task or execute callback upon expiry

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching

Sloth Design

ActivateTask(Taskl) prio=1]IRQ Source
request Taskl

Hardware | [y IRQ prio=2||RQ Source
Periphery request ISR2

prio=3 | |RQ Source
request Task3

Timer | Alarm Exp. prio=4|RQ Source
System request| Task4

IRQ
Arbi-
tration
Unit

CPU

Task Stack

¥

curprio=X

]

IRQ Vector
Table

$

task1()

isr2()

task3()

task4 ()

m Platform must support interrupt priorities
and interrupts requests from software for synchronous task activation

0 Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching

Example Control Flow

Alarml
CPU Prio Level f
4 ISR2 Task4 Term()
a1 e
! e Act(Task1)
Taskl RelRes(Res1) |
3+ i 1
I
I
21+ |
SetAlarm(Al1) \
1 Taskl Term() \
it ()
0
enable() ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ —
t1 ta t3 ta t5 te tr ts to t10
O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 7

Design Implications

B Concise kernel design and implementation
(minimal system: < 200 LoC, < 700 bytes)

m Single control-flow abstraction for tasks, ISRs category 1/2, callbacks
= handling oblivious to how it was triggered (by hardware or software)

m Unified priority space for tasks and ISRs,
no rate-monotonic priority inversion

B Straight-forward synchronization by altering CPU priority

= Resources with ceiling priority (also for ISRs!)
= Non-preemptive sections with RES_SCHEDULER (highest task priority)

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 8

Implementations

Small kernel makes porting efforts easy

Implementations for several platforms

Infineon TriCore (widely used in automotive systems)
ARM Cortex-M3

Freescale MPC56xx (embedded Power Architecture)
Intel Atom

Configuring an application includes

= mapping tasks to interrupt sources
= assigning priorities to each interrupt source

Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching

Performance Evaluation: Methodology

B Evaluation of task-related system calls:

= Task activation
= Task termination
= Task acquiring/releasing resource

m Performance of other system calls and application similar to
traditional systems

m Comparison with performance of commercial OSEK implementation

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 10

Performance Evaluation: Results

® Infineon TriCore

Cycles
'y

400

300

200

100
Activate() Activate() Terminate() Chain() GetRes ()

w/ dispatch w/ dispatch w/ dispatch

Speedup ~ 2x ~ 4x ~ 20x =~ bx ~ 3x

I sioth
B Commercial OSEK

ReleaseRes() ReleaseRes()

~
~

8x

w/ dispatch
~ 8x

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching

11

Performance Evaluation: Results

m ARM Cortex-M3

Cycles
4

500
400
300
200

100

Activate() Activate() Terminate() Chain() GetRes() ReleaseRes() ReleaseRes()
w/ dispatch w/ dispatch w/ dispatch w/ dispatch
Speedup = 26x ~ 13x ~ 13x ~ 8x ~ bx ~ 6x ~~ Tx

I Sioth
B Arctic Core

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 12

Further Work: The Sloth Family

Sloth [RTSS "09]
= support for basic tasks (OSEK BCC1)

Sleepy Sloth [RTSS '11]
= support for extended tasks (OSEK ECC1)

Sloth on Time [RTSS '12]

= time-triggered execution using hardware timer arrays
(OSEKtime, AUTOSAR schedule tables)

Slothful Linux

= hybrid system running Linux and Sloth in parallel on the same hardware
Multi-core Sloth

= running on multiple cores (AUTOSAR multi-core OS specification)

Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 13

Summary

m Sloth implements tasks by using IRQs and interrupt handlers on
commodity hardware platforms

= Makes tasks a low-overhead abstraction
= Avoids rate-monotonic priority inversion
= Keeps software footprint low

http://wwwd.cs.fau.de/Research/Sloth

O Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching

14

http://www4.cs.fau.de/Research/Sloth

Bibliography

@ Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schréder-Preikschat.
Sloth: Threads as interrupts.
In Theodore P. Baker, editor, Proceedings of the 30th IEEE Real-Time Systems
Symposium (RTSS 2009), pages 204-213, Los Alamitos, CA, USA, 2009.

@ Wanja Hofer, Daniel Lohmann, and Wolfgang Schréder-Preikschat.
Sleepy Sloth: Threads as interrupts as threads.
In Luis Almeida and Scott Brandt, editors, Proceedings of the 32nd IEEE Real-Time
Systems Symposium (RTSS 2011), pages 6777, Los Alamitos, CA, USA, 2011.

B Wanja Hofer, Daniel Danner, Ranier Miiller, Fabian Scheler, Wolfgang
Schréder-Preikschat, and Daniel Lohmann.
Sloth on Time: Efficient hardware-based scheduling for time-triggered RTOS.
In Chenyang Lu, editor, Proceedings of the 33rd IEEE Real-Time Systems
Symposium (RTSS 2012), Los Alamitos, CA, USA, 2012.

0 Rainer Miiller Sloth: Efficient Hardware-based Task Scheduling and Dispatching

