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Overview: Sloth

Main Idea
When designing an embedded kernel, embrace hardware peculiarities
instead of blindly abstracting from them, in order to optimize
non-functional kernel properties such as latency, memory footprint,
and priority management.
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Motivation: Rate-Monotonic Priority Inversion

Problem:
high-priority threads disturbed by low-priority ISRs

Sloth approach:
threads in the same priority space as ISRs; i.e., threads as interrupts
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Sloth: Threads as Interrupts

Idea: implement threads as
interrupt handlers
Thread activation by interrupt requests

Let interrupt subsystem do the scheduling and
dispatching work
Applicable to priority-based real-time systems
Advantage: small, fast kernel with unified
control-flow abstraction
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OSEK and AUTOSAR

Standards developed by automotive industry
AUTOSAR is the successor of OSEK
Statically configured, event-triggered OS

Tasks scheduled and dispatched by OS scheduler
Category-2 ISRs can call system services, need kernel sync
Category-1 ISRs cannot call system services, do not need sync

Resources for application sync, with stack-based priority-ceiling
protocol
Alarms configured to activate task or execute callback upon expiry
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Sloth Design
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Platform must support interrupt priorities
and interrupts requests from software for synchronous task activation
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Example Control Flow
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Design Implications

Concise kernel design and implementation
(minimal system: < 200 LoC, < 700 bytes)

Single control-flow abstraction for tasks, ISRs category 1/2, callbacks
handling oblivious to how it was triggered (by hardware or software)

Unified priority space for tasks and ISRs,
no rate-monotonic priority inversion

Straight-forward synchronization by altering CPU priority
Resources with ceiling priority (also for ISRs!)
Non-preemptive sections with RES_SCHEDULER (highest task priority)
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Implementations

Small kernel makes porting efforts easy

Implementations for several platforms
Infineon TriCore (widely used in automotive systems)
ARM Cortex-M3
Freescale MPC56xx (embedded Power Architecture)
Intel Atom

Configuring an application includes
mapping tasks to interrupt sources
assigning priorities to each interrupt source
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Performance Evaluation: Methodology

Evaluation of task-related system calls:
Task activation
Task termination
Task acquiring/releasing resource

Performance of other system calls and application similar to
traditional systems

Comparison with performance of commercial OSEK implementation
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Performance Evaluation: Results
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Performance Evaluation: Results

ARM Cortex-M3

0

100

200

300

400

500

Cycles

Activate() Activate() Terminate() Chain() GetRes() ReleaseRes() ReleaseRes()

w/ dispatch w/ dispatch w/ dispatch w/ dispatch

Speedup ≈ 26x ≈ 13x ≈ 13x ≈ 8x ≈ 6x ≈ 6x ≈ 7x

Sloth

Arctic Core

Rainer Müller Sloth: Efficient Hardware-based Task Scheduling and Dispatching 12



Further Work: The Sloth Family

Sloth [RTSS ’09]
support for basic tasks (OSEK BCC1)

Sleepy Sloth [RTSS ’11]
support for extended tasks (OSEK ECC1)

Sloth on Time [RTSS ’12]
time-triggered execution using hardware timer arrays
(OSEKtime, AUTOSAR schedule tables)

Slothful Linux
hybrid system running Linux and Sloth in parallel on the same hardware

Multi-core Sloth
running on multiple cores (AUTOSAR multi-core OS specification)
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Summary

Sloth implements tasks by using IRQs and interrupt handlers on
commodity hardware platforms

Makes tasks a low-overhead abstraction
Avoids rate-monotonic priority inversion
Keeps software footprint low

http://www4.cs.fau.de/Research/Sloth
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