
Software System Engineering: Was fehlt noch?
David Lorge Parnas

Abstract

The recognition that software had to be constructed in a more disciplined, science-based, process began with the study of
operating systems. The first operating systems were simple programs designed to replace the computer operator. Soon
they took responsibility for other tasks such as permitting simultaneous execution of several user jobs at once and
managing shared resources. They quickly became the most complex programs in widespread use.

Problems that were first encountered in operating systems are now found in many other software products. Ideas that
were pioneered in operating systems are now commonly used in those products. Thanks to advances in hardware and
software, computers can perform services that were unimaginable when such systems were first developed. However,
many problems remain. Software products commonly have a number of “bugs” and other problems that we would not
accept in a car or an elevator. Things that are considered essential in a mature profession are missing in software
development. This talk discusses three of them, viz:

 • Education that prepares developers to apply science, education, and discipline to software tasks
 • Rigid entrance standards for the profession
 • Professional documentation standards similar to those used in other engineering disciplines

The least discussed of the three is documentation. The talk shows how we can use structured mathematical notation to
provide precise documentation that is complete and useful to developers, reviewers, and maintainers. It then makes some
suggestions for helping to make the profession mature.

Middle Road Software, Inc.

David Parnas 1/67 Erlangen2012 Software System Engineering

1. ----------------------------1973 Professor of Operating Systems ?????
 3
2. ---Progress in Four Decades
 4
3. --Zweifel (Doubts)
 5
4. --Lessons From Dijkstra’s work
 6
5. ---------------What About Education for Software Systems Engineers?
 7
6. --More on Education
 8
7. ---Licensing: Another Gap
 9
8. ---------------------------Recording and Communicating Design Details
 10
9. ---------------------------Documentation: a perpetually unpopular topic
 11
10. ---The Words of a Developer
 12
11. -------------------------Dilbert Knows that documentation is important.
 13
12. -----------------------------------Programming vs. software Engineering
 14
13. ----------------------------What Is Meant by “Document” In Engineering
 15
14. --------------------------A Preliminary Example: Dell Keyboard Checker
 16
15. ----------------------------------Auxiliary functions defined on 2nd Page
 17
16. ---------------------The remainder of the Keyboard Checker Document
 18
17. --------------------------Tabular Expressions: No Theoretical Advantage
 19
18. -------------------------------Why it Is Important to Call this a Document
 20
19. --------------------Documentation as An Information Retrieval Problem
 21
20. --Completeness and Consistency
 22
21. ------------------------------Are computer programs self-documenting?
 23
22. -------------------------Internal documentation vs. separate documents
 24
23. --Models vs. documents
 25
24. ---------------------Design documents vs. introductory documentation
 26
25. -----------------------------------Specifications vs. other descriptions (1)
 27
26. -----------------------------------Specifications vs. other descriptions (2)
 28
27. --Extracted documents
 29
28. --Documents Are Not Programs
 30
29. --------------------------Roles played by documents in development - 1
 31
30. --------------------------Roles played by documents in development - 2
 32
31. --------------------------Costs and benefits of software documentation
 33
32. -------------------------The most important software design documents
 34
33. ---Considering readers and writers
 35

34. --Documents and mathematics
 36
35. --Requirements Documentation
 37
36. ---------------The two-variable model for requirements documentation
 38
37. ---------------the Two Variable Model is Not Appropriate for Software
 39
38. -------------The four-Variable model for requirements documentation
 40
39. ---Nondeterminism
 41
40. ---------------------------------Experience and examples: Requirements
 42
41. ---Interfaces
 43
42. --------------------------------Surprising Observations about Interfaces.
 44
43. -------------------------------Software component interface documents
 45
44. --Part I of Clock Interface Document
 46
45. ---------------------------------------Part II of Clock Interface Document
 47
46. ---------------------------------Extract from Module Interface Document
 48
47. --Program function documents
 49
48. ---------------------------------------Example of Program-Function Table
 50
49. ------------------------------Program-Function for a Poor (real) Program
 51
50. --Subtables for Nuclear Plant Code
 52
51. --Module internal design documents
 53
52. --Checking an Internal Design
 54
53. ---Additional documents
 55
54. -----------------------------------Tabular expressions for documentation
 56
55. ----------------------------There are many forms of tabular expressions.
 57
56. -----------------------------Tables like this Can be Found on the Internet
 58
57. --This says the same thing
 59
58. ------------------------------------This Too is A Mathematical Expression
 60
59. ---A Circular Table
 61
60. -----------------------Is My proposal Different from “Formal Methods”?
 62
61. ---The Bottom Lines:
 63
62. -------------------------Management’s Role in Document Driven Design
 64
63. --Research Problems
 65
64. ---Summary and Outlook
 66
65. ---Real Improvement is Difficult
 67

Middle Road Software, Inc.

David Lorge Parnas 2/67 Erlangen2012 Software System Engineering.pages

1973 Professor Of Operating Systems ?????
I had no particular interest in OS. Most people who were studied performance
using variations on queueing theory.
Bewildering letter from Prof Dr. Hartmut Wedekind (Dekan - THD)

We consider you qualified for a full Professorship in Operating
Systems……..

Explanation: Two Chairs: One structural, one queueing theory based.
Modularization, Interface Design, Variability, Validation, Coordination of
Sequential Processes, Design Languages, etc. were my “thing”.
Operating Systems were a perfect “case -study” for these issues.

Auch heute! Variabil itätsmodell ierung, Modularität und
Wiederverwendung, Programmiersprachen usw. stehen auf der
Tagesordnung.

Middle Road Software, Inc.

David Lorge Parnas 3/67 Erlangen2012 Software System Engineering

Progress In Four Decades
User Interfaces

 • My first visit to Erlangen: Display Use for Man-Machine Dialog (eds. W. Händler, J. Weizembaum)
 • Today’s interfaces unimaginable then! (Bürgermeister: “In my dream, I talked with my toy train.”)

Parallel Processing common
Better treatment of variability, product lines, etc.
Automation of update process (Assembly once a major barrier!)
“Almost” standard interfaces for networks.
Languages that try to reflect structuring principles
Example: Lessons of the T.H.E system - Applicable in all current systems

 • Uses Hierarchy
 • Multithreading (called processes)
 • Deadlock prevention
 • Stepwise refinement

Middle Road Software, Inc.

David Lorge Parnas 4/67 Erlangen2012 Software System Engineering

Zweifel (Doubts)
User Interfaces; How much of the advance is actually hardware?

 • My Erlangen paper: “Sample Man Machine Interface Specification-A Graphics Based Line Editor”
 • Implementation attempt was stupid: Windows were not implementable at that time.

Parallel processing common
 • Research that once started with Illiac has started again (from zero). Problems still unsolved.
 • Dijkstra approach never discussed.

Better treatment of variability, product lines, etc.
 • Many unnecessary differences between products of one company. (e.g. Apple, Nokia)
 • Retrofitting rather than up-front design of families.

Automation of update process
 • One-way street
 • Not module replacement

“Almost” standard interfaces for networks. “Almost” says it all! Its a euphemism for “not”.
Languages that try to reflect structuring principles

 • Force many implementation decisions on users. Not always the appropriate decisons.

Middle Road Software, Inc.

David Lorge Parnas 5/67 Erlangen2012 Software System Engineering

Lessons From Dijkstra’s Work
Many of them still applicable!

 • Structured Programming
 • Principle of refinement often ignored
 • Little understanding of why “go to” considered harmful

 • Separation of Concerns (applied in an ad hoc way)
 • Hiding the number of processors
 • Transput streams (pipes)
 • Predicate transformers (There are both better and worse ways but wp still useful.)

These are principles - not technology
Many modern graduates know only the technology.
Leading researchers for whom the ideas should be accessible believe that
anything old is no longer valuable. They pass this belief on to students.

Middle Road Software, Inc.

David Lorge Parnas 6/67 Erlangen2012 Software System Engineering

What About Education For Software Systems Engineers?
As an EE, I could talk and work with students from anywhere (even MIT).
As a software specialist, I find communication always difficult.

 • I don’t know what they know and don’t know.
 • Every school seems to have different terminology and notation.
 • Professors teach their “Lieblingsthema” and neglect things they consider dull or trivial. I often

ask someone where they studied so I can communicate with them.

We have yet to agree on a Core Body of Knowledge.
We do not consistently follow the “professional education” model.

 • Both theory and practice!
 • Teach how to apply theory in practice. We keep them separate.
 • Distinguish between current technology and “eternal” principles
 • Teach appreciation for real standards, disciplined processes, reviews, etc.
 • Teach professional responsibility in a meaningful way

Middle Road Software, Inc.

David Lorge Parnas 7/67 Erlangen2012 Software System Engineering

More On Education
200. Parnas, D.L., “Software Engineering Programmes are not Computer
Science Programmes”, Annals of Software Engineering, vol. 6, 1998, pgs.
19-37.

 • Reprinted (by request) in IEEE Software, November/December 1999,
pp. 19-30.

Abstract
Programmes in “Software Engineering” have become a source of contention in many
universities. Computer Science departments, many of which have used that phrase to
describe individual courses for decades, claim software engineering as part of their
discipline. Some engineering faculties claim “Software Engineering” as a new speciality in
the family of engineering disciplines. We discuss the differences between traditional
computer science programmes and most engineering programmes and argues that we
need software engineering programmes that follow the traditional engineering approach to
professional education. One such programme is described.

Middle Road Software, Inc.

David Lorge Parnas 8/67 Erlangen2012 Software System Engineering

Licensing: Another Gap
If you have created a web page, you can call yourself a “Software Engineer”.
Why not?

 • What definition or rule would you be violating?
 • Who would tell you you could not?
 • What evidence could anyone demand of you?

This is not the case in Law, Medicine, Engineering, or Hair Cutting!
 • Those are organized professions!. Software Engineering is not yet one of them.

Do we agree on what Software Systems Engineers must know?
 • Should they know what a loop invariant is and how to use it?
 • Should they know how to check for termination of a loop?
 • Should they understand how to design abstract interfaces?
 • Should they understand how to design a product line as a program family?
 • Should they know how to use the 4-variable requirements model?

Experts can, and do, disagree on these questions. We have work to do.

Middle Road Software, Inc.

David Lorge Parnas 9/67 Erlangen2012 Software System Engineering

Recording And Communicating Design Details
Bridge designers can communicate precisely with design documentation
This is true of automobile designers, aircraft designers, chemical
manufacturers, etc. etc.
They have documentation standards that allow interchange (sometimes
dictated by government regulations).
We have no such thing.
This is something where researchers can help.

Middle Road Software, Inc.

David Lorge Parnas 10/67 Erlangen2012 Software System Engineering

Documentation: A Perpetually Unpopular Topic
Software documentation is disliked by almost everyone.

 • Program developers don’t want to prepare documentation.
 • User documentation is often left to technical writers who do not necessarily know all

the details. Their documents are often initially incorrect, inconsistent and incomplete.
 • The intended readers find the documentation to be poorly organized, poorly prepared

and unreliable; they do not want to use it. Most prefer “try it and see” or “look at the
code ” to relying on documentation.

 • User documentation is often displaced by “help” systems because it is hard to find the
details that are sought in conventional documentation. Unfortunately, the “help”
system only answers a set of frequently occurring questions; it is usually incomplete
and redundant. Those with an unusual question don’t get much help.

 • Computer Science researchers do not see software documentation as a research topic
They can see no mathematics, no algorithms, etc..

These factors feed each other in a vicious cycle.
Bad documentation is not used and does not get improved.

Middle Road Software, Inc.

David Lorge Parnas 11/67 Erlangen2012 Software System Engineering

The Words Of A Developer
“Documentation means the tedious task of reading thru a finished code, and making a Doc/pdf
file which is used during Project Reviews or during resolution of blame-games as it inevitably
happens at some point of time. This document is never used by the next programmer. Generally
the Software is again modified (ported to another platform, or significantly changed because
the rules of the world have changed) much later, when nobody understands the document any
more. As an example, when I started my work (there were no MSWord/Acrobat in 1972), I got
about 300 loose sheets left by a previous developer with flow charts and Explanations of flow
charts. I left it in my drawer unread until I finished the compiler on my own.
So, Document means something that we all hate with our heart.”
	 	 	 	 	 	 	 	 	 	 	 	 	 (Basudeb Gupta, Private Communication)

The word are true!
Can we do something?

Middle Road Software, Inc.

David Lorge Parnas 12/67 Erlangen2012 Software System Engineering

Dilbert Knows That Documentation Is Important.

When people leave, knowledge leaves with them.

Middle Road Software, Inc.

David Lorge Parnas 13/67 Erlangen2012 Software System Engineering

Programming Vs. Software Engineering
“Software Engineering” is not just another name for programming.
Programming is only a small part of software Engineering.

 • “Software” refers to “a program or set of programs written by one group of
people for repeated use by another group of people”1. This is fundamentally
different from producing a program for a single use, or for your own use.

 • When producing a program for your own use, you can expect the user to understand
the program and to know how to use it. There is no need to prepare manuals, to
explain what parameters mean, to specify the format of the input, etc. . All of these
things are required when preparing a program that will be used by strangers.

 • When producing a program for a single use, there is no need to design a program that
can be easily maintained in several versions (product line) and no need to describe the
design decisions to those who will have to change it.

These differences between software development and programming (multi-person
involvement, multi-version use) make documentation essential for software development.

 • You can be a good programmer and a bad software developer, but
 • you cannot be a good software developer and a bad programmer.

Middle Road Software, Inc.

David Lorge Parnas 14/67 Erlangen2012 Software System Engineering

1 Brian Randell was the first to point this out to me.

What Is Meant By “Document” In Engineering
A record of design decisions that is binding.

 • Documents restrict future decisions.
 • Deviations require an approved change.

To be as useful as possible documents must be:
 • Accurate
 • Consistent
 • Complete (all decisions fully documented).
 • Explicitly structured for easy retrieval and easy change.

Informal introductions/explanations are not documents in this sense.
Documents are not written afterwards; they are the design medium.
Vague documents are like vague contracts2; they may be worse than having
no documents at all.

Middle Road Software, Inc.

David Lorge Parnas 15/67 Erlangen2012 Software System Engineering

2 A design document is an essential part of a contract but not the whole contract.

A Preliminary Example: Dell Keyboard Checker

In daily use in Limerick for many years.
Claimed to be completely correct.
Two informal descriptions totaling 21 pages (English).

 • several ambiguities
 • a few missing cases
 • a few errors

Challenge by a skeptical manager, “Do better!”.
All information could be expressed in two pages

 • preparation of those pages revealed errors in program and older descriptions
 • new document much more precise and easily used.
 • new document suitable as input to testing tools and inspection process.

Middle Road Software, Inc.

David Lorge Parnas 16/67 Erlangen2012 Software System Engineering

Auxiliary Functions Defined On 2nd Page3

Middle Road Software, Inc.

David Lorge Parnas 17/67 Erlangen2012 Software System Engineering

3 Not the latest version of this method! NOTATION CAN BE SIMPLIFIED BUT STRUCTURE DOES NOT CHANGE.

The Remainder Of The Keyboard Checker Document
Name Meaning Definition
keyOK most recent key is the expected one r(T) = N(p(T))

keyesc most recent key is the escape key r(T) = esc

prevkeyOK key before the most recent key was expected one r(p(T)) = N(p(p(T)))

prevkeyesc key before the most recent key was escape key r(p(T)) = esc

preprevkeyOK key 2 keys before most recent key was expected key r(p(p(T))) = N(p(p(p(T))))

prevexpkeyesc key expected before most recent key was escape key N(p(p(T)))= esc

We have found a way to simplify this notation
We can train both developers and managers to read these documents.
We have trained some to write such documents.
Experience in reading eases learning to write.

Middle Road Software, Inc.

David Lorge Parnas 18/67 Erlangen2012 Software System Engineering

Tabular Expressions: No Theoretical Advantage
The document is a mathematical expression, mathematically equivalent to the one below.

The advantages are practical, not theoretical.
 • Fewer errors
 • Checkability
 • Ease of reference

Keyboard Checker: Conventional Expression

(N(T)=2∧keyOK∧(¬(T=_)∧N(p(T))=1))∨(N(T)=1∧(T=_∨(¬(T=_)∧N(p(T))=1))∧
(¬keyOK∧¬prevkeyOK∧¬prevkeyesc))∨((¬(T=_)∧N(p(T))=1)∧
((¬keyOK∧keyesc∧¬prevkeyesc)∨(¬keyOK∧keyesc∧prevkeyesc∧
prevexpkeyesc))∨((N(T)=N(p(T))+1)∧(¬(T=_)∧(1<N(p(T))<L))∧(keyOK))∨
((N(T)=N(p(T))-1))∧(¬keyOK∧¬keyesc∧(¬prevkeyOK∧prevkeyesc∧
preprevkeyOK)∨prevkeyOK)∧((¬(T=_)∧(1<N(p(T))<L))∨(¬(T=_)∧N(p(T))=L)))∨
((N(T)=N(p(T)))∧(¬(T=_)∧(1<N(p(T))≤L))∧((¬keyOK∧¬keyesc∧(¬prevkeyOK∧
prevkeyesc∧¬preprevkeyOK))∨(¬keyOK ∧¬prevkeyOK∧ ¬prevkeyesc)∨
(¬keyOK∧keyesc∧¬prevkeyesc)∨(¬keyOK∧keyesc∧prevkeyesc∧
prevexpkeyesc))∨((N(P(T)=Fail)∧(¬keyOK∧keyesc∧prevkeyesc∧
¬prevexpkeyesc)∧(1≤N(p(T))≤L))∨((N(P(T)=Pass)∧(¬(T= _)∧N(p(T))=L)∧(keyOK))

Software Quality Research Laboratory - University of Limerick - Ireland

42/56
David Parnas	 	 	 	 	 	 	 	 	 2010 October 26 21:50 ENASE/ICSOFT slides

Middle Road Software, Inc.

David Lorge Parnas 19/67 Erlangen2012 Software System Engineering

Why It Is Important To Call This A Document
Industry recognizes the need for documentation, but

 • Time pressure often causes them to postpone it or not do it at all.
 • They do not know how to do it better.
 • What they produce is not very useful; it often sits unused.
 • Developers find the code easier to use and more trustworthy.

The inadequacy of documentation has led to so-called “agile” methods.
Developers will not have time to prepare both current and better documents.
They have to see precise, structured documentation as an improvement on
what they do and not as an addition to what they already do.
The purpose of this method is documentation, not proof!

 • It is designed for information retrieval.
 • It is designed for ease of checking for completeness and consistency.

Middle Road Software, Inc.

David Lorge Parnas 20/67 Erlangen2012 Software System Engineering

Documentation As An Information Retrieval Problem
Design documents are places to put information so that:

 • Reviewers can get the information they need.
 • Developers can get the information they need.
 • Testers can get the information they need.
 • Modifiers (maintainers) can get the information they need.

The key to information retrieval is having strict rules for:
 • what information to store,
 • where to store that information, and
 • how to store information.

The same rules can then be used to retrieve information.

Middle Road Software, Inc.

David Lorge Parnas 21/67 Erlangen2012 Software System Engineering

Completeness And Consistency

Documentation is expected to be complete and consistent, but...
 • Individual documents are never complete descriptions of a system.
 • They are complete relative to a document content specification.
 • The complete set of documents must form a complete description.
 • There should be minimal duplication of information.
 • Unresolved Issues or missing information must be explicitly noted.
 • Each document gives a different view of the software.

Information accompanying today’s software often comes with
disclaimers, i.e., statements that deny any claim to accuracy.

 • This is not a property of engineering documents.
 • Part of professional responsibility is taking responsibility for documents.

Middle Road Software, Inc.

David Lorge Parnas 22/67 Erlangen2012 Software System Engineering

Are Computer Programs Self-documenting?
Code itself looks like a document.
In 2006, Brad Smith, Microsoft Senior Vice President and General Counsel,
said. “The Windows source code is the ultimate documentation of
Windows Server technologies”.
No such confusion with physical products; there is a clear distinction

 • between a circuit diagram and the circuit
 • between a bridge and its documentation.

Code is commonly described as self documenting
 • This may be true “in theory” but, in practice, it is a naive illusion or disingenuous.
 • We need documents that contain the essential (binding) information, abstracting from

the huge amounts of information in the code that we do not need.
 • We should be able to use a program without reading its code.
 • Code does not distinguish between required, incidental, and unintended properties.

Middle Road Software, Inc.

David Lorge Parnas 23/67 Erlangen2012 Software System Engineering

Internal Documentation Vs. Separate Documents

Nobody wants documentation distributed within a physical product.
 • Nobody wants to climb a bridge to determine the sizes of nuts and bolts
 • Drivers do not want to look at the bridge structure to know load limits.

We expect the documentation to be separate from the product.
Some propose that assertions, or program functions, and similar
information be placed in the code. (e.g. Bertrand Meyer)

 • This is useful to the developers and maintainers but not other readers.
 • Testers should be able to prepare “black box” test suites before code completion.
 • Programmers using a program should not have to read it.

Middle Road Software, Inc.

David Lorge Parnas 24/67 Erlangen2012 Software System Engineering

Models Vs. Documents
Renewed interest in models and “model-driven engineering.”
There is a big distinction between “model” and “document”.
Definition: A model of a product is a simplified depiction of that product; a model may be
either physical (usually reduced in size and detail) or abstract.

 • A model will have some important properties of the original.
 • Not all properties of the model are properties of the actual system.

Definition: A mathematical model of a system is a mathematical description of the
properties of a model of that product.

 • Mathematical models can be very useful to developers but, because they are not
necessarily accurate descriptions; they may not be suitable as documents.

 • One can derive information from some models that is not true of the real system.
 • Consequently, models must be used with great care;
 • Every precise and accurate document can constitute a safe mathematical model

Middle Road Software, Inc.

David Lorge Parnas 25/67 Erlangen2012 Software System Engineering

Design Documents Vs. Introductory Documentation
When we write something, it may be intended for use either as a tutorial
narrative or as a reference work.

 • Tutorial narratives are usually designed to be read from start to end.
 • Reference works are designed to allow a reader to retrieve specific facts.
 • Tutorials are intended for people with little previous knowledge about the subject.
 • Reference documents are generally designed for people who already know a lot about

the subject but need to fill specific gaps in their knowledge.
Compare introductory language textbooks with dictionaries.

 • Textbooks begin with the easier and more fundamental aspects of the language.
 • Dictionaries arrange words in a specified order that is not based on the above.
 • Narratives make poor reference works
 • Reference works are a poor way to get an introduction to a subject.

We need both kinds of documents but this talk is about reference documents.

Middle Road Software, Inc.

David Lorge Parnas 26/67 Erlangen2012 Software System Engineering

Specifications Vs. Other Descriptions (1)
We must be conscious of the role that a document will play in a development
process. There are two basic roles, description and specification.

 • Descriptions provide properties of a product that exists (or once existed).
 • Specifications are descriptions that state only the required properties of a product.
 • A specification that states all required properties is called a full specification.
 • Descriptions may include properties that are incidental and not requirements.
 • If a product does not satisfy a specification, it is not acceptable for the use intended.

The difference is one of intent, not form or even content.
 • Every specification that a product satisfies is also a description of that product.
 • The notation can be the same.
 • This has confused many researchers.
 • There is no such thing as a “specification language”.

Middle Road Software, Inc.

David Lorge Parnas 27/67 Erlangen2012 Software System Engineering

Specifications Vs. Other Descriptions (2)
Distinction is important when one product is used as a component of another.

 • The builder of the using product may assume that any replacements will still have the
properties stated in a specification.

 • This is not true if the document is a description that is not a specification.
 • Users should not rely on descriptions that are not specifications.

Specifications impose obligations on the implementers, users, etc.
 • When presented with a specification, implementers may either

 • accept the task of implementing that specification, or
 • reject the job completely, or
 • report problems with the specification and propose a revision. (no “best effort”)

 • Users must be able to count on the properties stated in a specification;
 • Users must not base their work on any properties not stated in the specification.
 • Purchasers are obligated to accept, and pay for, a product that meets the (full)

specification included in a purchase agreement or bid.

Middle Road Software, Inc.

David Lorge Parnas 28/67 Erlangen2012 Software System Engineering

Extracted Documents
It is possible to produce a description by examining the product.

 • Extracted documents will be descriptions but not usually specifications.
 • Observation or inspection cannot tell you what was intended or what is required.
 • Extracted documents usually contain low-level information, not abstractions.
 • Extracted documentation is of little value during development.
 • Extracted documents not a valid guide for testers. Would be circular; You are assuming

that the code is correct and testing to see that it does what it does.
 • Documentation based on comments can be untrustworthy.

Javadoc like tools are of very limited use.
 • Used by developers who do not want to document. (lazy)
 • Depend on comments
 • Are unable to distinguish between incidental and required properties

Middle Road Software, Inc.

David Lorge Parnas 29/67 Erlangen2012 Software System Engineering

Documents Are Not Programs

They describe mappings from input to output without describing the
steps in the computation process or any other information that should
not be in the document4.
They must provide the exactly the information that the intended
readership needs in a way that is easy for them to use.
Our documents are mathematical expressions describing a function
that maps an input to an output.
Documents must answer questions put by users, i.e. “If this happens, what
might the output be”.

Middle Road Software, Inc.

David Lorge Parnas 30/67 Erlangen2012 Software System Engineering

4 Content definitions for documents will be discussed later.

Roles Played By Documents In Development - 1
Documentation as the design medium

 • Decisions are made by putting them in documents.
Documentation-based design reviews

 • Creating documentation reveals problems
 • Reviewing documentation is an early design review.

Documentation based code inspections
 • Reviewing programs against their specification
 • Reviewing the programs that use that program.
 • Divide and conquer using hierarchical decomposition and displays

Documentation based revisions
 • Maintainers need guidance
 • Developers may have forgotten, quit, died, become managers…...

Middle Road Software, Inc.

David Lorge Parnas 31/67 Erlangen2012 Software System Engineering

Roles Played By Documents In Development - 2
Documentation in contracts

 • Specification of the set of acceptable deliverables is an essential part of contracts.
 • Contract also includes schedules, cost formulae, penalty clauses, statements about jurisdictions

for dispute settlement, warranty terms, etc.

Documentation is used to attribute blame and settle disputes
 • Who did not conform?
 • Which component is wrong?

Documentation and compatibility
 • The chimera of interchangeable and reusable components will not be achieved without a clear

precise specification for those components.

Documentation as a medium for the parties to communicate.
 • Volker Gruhn’s observations: “Communication the key determiner of success.”
 • Communication both when writing documents and when they are used.
 • Documentation implements structured communication both when writing and afterwards.

Documentation is the key to distributed development.

Middle Road Software, Inc.

David Lorge Parnas 32/67 Erlangen2012 Software System Engineering

Costs And Benefits Of Software Documentation
Documentation production costs seem easy to measure.
Much harder to measure the cost of not producing the documentation.
What matters is the net cost - production cost minus savings.
Losing time by adding people.

 • Frederick P. Brooks, Jr.: Adding new staff to a late project can make it later.
 • Newcomers need information Experienced staff become less productive
 • Good documentation ameliorates the problem.

Time is wasted searching for answers.
 • Documentation that is structured for information retrieval saves frustrating hours.

Time is wasted because of incorrect and inconsistent information
The cost of detecting errors late or never is higher than early detection.
Time is wasted in inefficient and ineffective design reviews.
Malicious exploitation of undocumented properties by hackers.

Middle Road Software, Inc.

David Lorge Parnas 33/67 Erlangen2012 Software System Engineering

The Most Important Software Design Documents

Each project will have its own documentation requirements.
There is a small set of documents that is always needed. They are:

 • The Systems Requirements document

 • The Module Structure document (module guide, informal)

 • Module interface documents

 • Module internal design documents

 • Program function documents

Middle Road Software, Inc.

David Lorge Parnas 34/67 Erlangen2012 Software System Engineering

Considering Readers And Writers
Many separate documents because of variety of readers and writers
The readers have different needs; Writers have different information

No two documents have the same readers or creators.

The Main Documents

Document Writers Readers/Users

Software Requirements
Document

User reps, UI experts,
app l icat ion exper ts ,
contro l led hardware
experts

Authors of module guide and
module interface specifications,
(Software “Architects”)

Module Guide Software “Architects” All Developers

Module Interface
Specifications

Software “Architects”
Developers who implement or
use the module

Program Uses Structure Software “Architects” Component Designers, Programmers

Module Implementation
Design Document

Component Designers
Programmers implementing
component

Display Method Program
Documentation

P r o g r a m m e r s
i m p l e m e n t i n g
component

inspectors, maintainers
potential reusers

This is a classic list but when it was new, we did not know how to do it.

Modules are collections of programs and data structures that are to be
produced by the same programmer or group of programmers.
Components are collections of programs that are shipped and used as a unit.

Middle Road Software

31/61

David Parnas	 20 May 2010 00:16 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Iowa State DL slides.pages

Middle Road Software, Inc.

David Lorge Parnas 35/67 Erlangen2012 Software System Engineering

Documents And Mathematics
It is rare to speak of software documentation and mathematics together.
Documents are predicates.

 • We can write “document expressions” to characterize classes of products.
Mathematical definitions of document contents are needed.

 • Avoid the endless discussions about, “What goes where?”
 • Avoid duplication and missing information.

Using mathematics in documents
 • Necessary for accuracy, lack of ambiguity, completeness, and ease of access
 • The contents of a document can be defined abstractly as a set of relations
 • Representation of this information is a critical issue.
 • If it cannot be read, it is not a useful document.

Engineers use mathematics. Technicians might not.

Middle Road Software, Inc.

David Lorge Parnas 36/67 Erlangen2012 Software System Engineering

Requirements Documentation
Professional Engineers must make sure that their products are fit for use.

 • This implies that an Engineer must know what the requirements are.
An Engineer need not determine requirements, but must check them.

 • Requirements are not limited to the conscious wishes of the customer.
 • Other requirements implied by the obligation of Engineers to protect the safety, well-

being and property of the general public.
Engineers should insist on having a complete, consistent, and unambiguous
document that has been approved by all relevant parties..
No user visible decisions should be left to the Engineers/programmers

Middle Road Software, Inc.

David Lorge Parnas 37/67 Erlangen2012 Software System Engineering

The Two-variable Model For Requirements Documentation
The two-variable model has been used in many areas of engineering.

A product can be viewed as a black box with p inputs and q outputs.
 • We are given no information about the internals.
 • Values of controlled variables, c1,…, cq, are determined by the system.
 • Values of monitored variables, m1,…, mp, are determined externally.
 • Output values can depend immediately on the input values (i.e., without delay)

Monitored Controlled
Variables Variables

m2

mp-1

c1

mp

c2

cq-1

cq

●

●

●

●

●

●

m1

Middle Road Software, Inc.

David Lorge Parnas 38/67 Erlangen2012 Software System Engineering

The Two Variable Model Is Not Appropriate For Software

Two-variable model applied to software (yellow box)
Relations are complex and not meaningful to users.
The input and output devices transform the information about the monitored
variables in complex ways. The relation between the inputs to the software
and its outputs can be too complex.
Users usually know what the monitored and controlled variables mean but not
the inputs and outputs.

Middle Road Software, Inc.

David Lorge Parnas 39/67 Erlangen2012 Software System Engineering

The Four-Variable Model For Requirements Documentation

Looking Inside the Black Box to distinguish Hardware from Software.

Monitored Input Output Controlled
Variables Variables Variables Variables

i1

 Monitoring Software Output
 Devices Devices

m1

m2

mp-1

c1

mp

c2

cq-1

cq

●

●

●

●

●

●

i1 o1

Middle Road Software, Inc.

David Lorge Parnas 40/67 Erlangen2012 Software System Engineering

Nondeterminism
In deterministic systems, the output values are a function of the input.

 • The values of outputs in the history are redundant.
 • We can treat SYS as a function: domain: values of MtT, range: values of CtT.
 • SYS(MtT)(T) evaluates to the value of the outputs at time T.

In the nondeterministic case, there are two complicating factors:
 • Relation SYS would not necessarily be a function.
 • The output may be constrained by previous output values, not just the input values.5

In the general case output values must be included in history descriptions.
For a 2-variable system requirements document we need two predicates NATP
and REQP. These are discussed next.

Middle Road Software, Inc.

David Lorge Parnas 41/67 Erlangen2012 Software System Engineering

5 A simple example to illustrate this problem is the classic probability problem of drawing uniquely numbered balls from an
opaque urn without replacing a ball after it is removed from the urn. The value that has been drawn cannot be drawn
again, but except for that constraint, the output value is random.

Experience And Examples: Requirements

Numerous requirements documents written using this model.
 • A-7 OFP [HKPS] [Heninger].

 • Pilots found hundreds of detail errors
 • Programmers coded from document

 • Bell Laboratories SES
 • Copied by others
 • “Shortest soak time”

 • Darlington Nuclear Power Generating Plant
 • basis for a successful inspection

 • Dell keyboard checker
 • Found errors in existing documents, 21 pages reduced to 2

Continued by NRL/SCR.
We could do better today and better yet tomorrow. (room for research)

Middle Road Software, Inc.

David Lorge Parnas 42/67 Erlangen2012 Software System Engineering

Interfaces

One of the most important, and least well understood,
concepts in Software Engineering.
Often, confused with syntax of invocations or a shared data
structure.
Definition: Interface

Given two communicating software components, A and B, B’s
interface to A is the weakest assumption about B that would allow
you to prove that A is correct.

Any change in B that invalidates its interface to A means
that, A could not be proven correct and should be changed.
Interfaces determine the difficulty of changing software.
Interface documents allow independent development.

Middle Road Software, Inc.

David Lorge Parnas 43/67 Erlangen2012 Software System Engineering

Surprising Observations About Interfaces.
 • There isn’t necessarily a 1:1 relation between a program and an interface.
 • Interfaces not symmetric. B’s interface to A differs from A’s interface to B.
 • B may have an interface to A even if A does not have an interface to B.
 • A component may have a specified interface. This tells the developers of other

programs what they may assume about the specified component.
 • If the developers of a component, A, make use of facts about a specified component,

B, that are not implied by B’s specified interface, the actual interface is stronger than
the specified interface and A should be considered incorrect (even if it is working).

 • B may have an interface with A even if neither invokes the other. For example, the
correctness of A may depend on B maintaining a shared data structure with certain
properties.

 • Published interface (assumption that can be made by all) should imply the actual pair-
wise interfaces but sometimes does not (bad error).

Middle Road Software, Inc.

David Lorge Parnas 44/67 Erlangen2012 Software System Engineering

Software Component Interface Documents
Two-variable model can be applied to software components
Discrete event version of the two-variable model, known as the Trace Function
Method (TFM), can be used.
TFM documents are

 • easily used as reference documents,
 • can be checked for completeness and consistency
 • can be input to simulators for evaluation of the design and testing an implementation.
 • can be reviewed by practitioners who reported many detailed factual errors

If people cannot read a document, they will not find faults in it.

Middle Road Software, Inc.

David Lorge Parnas 45/67 Erlangen2012 Software System Engineering

Part I of Clock Interface Document
More Output Functions

 min(T) ≡

PGM(r(T)) = SET HR min(p(T))

PGM(r(T)) = SET MIN ∧
0 ≤ ‘in(r(T)) ≤ 59 ‘in(r(T))

¬ (0 ≤ ‘in(r(T)) ≤ 59) min(p(T))

PGM(r(T)) = INC ∧
min(p(T)) = 59 0

¬ (min(p(T))=59) min(p(T)) + 1

PGM(r(T)) = DEC ∧
¬ (min(p(T))= 0) min((p(T))) −1

min(p(T))= 0 59

T= _ 0

35/42

David Parnas

 2008 May 23 16:33

 TFM slides 2008 slides

Middle Road Software, Inc.

David Lorge Parnas 46/67 Erlangen2012 Software System Engineering

Part II Of Clock Interface Document
Output Functions

hr(T) ≡

PGM(r(T)) = SET HR ∧
0 ≤ ’in(r(T)) < 24 ‘in(r(T))

¬ (0 ≤ in(r(T)) < 24) hr((p(T)))

PGM(r(T)) = SET MIN hr((p(T)))

PGM(r(T)) = INC ∧
min(p(T))= 59 ∧

hr(p(T))= 23 0

¬ hr(p(T))= 23 1+ hr((p(T)))

¬ (min(p(T))=59) hr((p(T)))

PGM(r(T)) = DEC

∧

¬ (min(p(T))= 0) hr((p(T)))

min(p(T))= 0 ∧
¬ (hr(p(T)))= 0 hr((p(T)))-1

hr(p(T))= 0 23

T= _ 0

34/42

David Parnas

 2008 May 23 16:33

 TFM slides 2008 slides

Middle Road Software, Inc.

David Lorge Parnas 47/67 Erlangen2012 Software System Engineering

Extract From Module Interface Document

Output Functions

hr(T) ≡

PGM(r(T)) = SET HR ∧
0 ≤ ’in(r(T)) < 24 ‘in(r(T))

¬ (0 ≤ in(r(T)) < 24) hr((p(T)))

PGM(r(T)) = SET MIN hr((p(T)))

PGM(r(T)) = INC ∧
min(p(T))= 59 ∧

hr(p(T))= 23 0

¬ hr(p(T))= 23 1+ hr((p(T)))

¬ (min(p(T))=59) hr((p(T)))

PGM(r(T)) = DEC

∧

¬ (min(p(T))= 0) hr((p(T)))

min(p(T))= 0 ∧
¬ (hr(p(T)))= 0 hr((p(T)))-1

hr(p(T))= 0 23

T= _ 0

34/42

David Parnas

 2008 May 23 16:33

 TFM slides 2008 slides

Middle Road Software, Inc.

David Lorge Parnas 48/67 Erlangen2012 Software System Engineering

Program Function Documents
Those who use a program need not know how it works.

 • They want to know what it does or is supposed to do.
Terminating deterministic program can be described by a function mapping
from a starting state to a stopping state.
States represented in terms of the values of program variables.
Theoretically, non-deterministic programs can be described a relation from
starting state to stopping states plus a special element for non-determination.
In practice, LD-relation (relation plus termination set) is better.

 • Allows all formulae to be in terms of actual program variables.
Mathematically equivalent but better in practice.
Tabular expressions make it work in practice.
Big programs, when well-written, have small tables.

Middle Road Software, Inc.

David Lorge Parnas 49/67 Erlangen2012 Software System Engineering

Example Of Program-Function Table

DEPARTMENT OF COMPUTING AND SOFTWARE • SOFTWARE QUALITY RESEARCH LABORATORY • CONNECTING THEORY WITH PRACTICE

 McMaster University 69
8 June 2002 16:00
InspectwithNever.fm

DISPLAY 2 (Continued)

Program (Repeated)

New variable (to be declared in the embedding block):var med : integer;

Program statements:
{Body}
while not found and (low ≤ high) do begin

med := (low + high) div 2;
Test

end

Specifications of Subprograms

 END OF DISPLAY 2

Test external variables: e, V, index, found, low, high, med (on Display 3)

R3(,) = (‘low ≤ ‘med ≤ ‘high) ⇒

‘V[‘med]
< ‘e = ‘e > ‘e

index’ | true index’ = ‘med true

found’
=

‘found true ‘found

low’
=

‘med + 1 ‘low ‘low

high’
=

‘high ‘high ‘med − 1 ∧ NC(e, V, med)

Middle Road Software, Inc.

David Lorge Parnas 50/67 Erlangen2012 Software System Engineering

Program-Function For A Poor (real) Program

• SOFTWARE QUALITY RESEARCH LABORATORY •

 University of Limerick 34 /53Luxinspectslides.fm
19 October 2005 22:48

Tabular Description of Reactor Shutdown Code
‘|OKTT| = .FALSE. (‘|OKTT| = .TRUE.) AND

NOT !NoSensTrip!
(‘|OKTT| = .TRUE.) AND .
!NoSensTrip!)

B(‘|PTB|,||DOW1||’) B(‘|PTB|,‘||DOW1||
.OR.‘#TMASK(‘|PTB|)#)

Table 4 B(‘|PTB,‘||DOW1||
.OR.‘#TMASK(‘|PTB|)#)

B(‘#CN#,||DOW2||’) B(‘#CN#,‘||DOW2||) Table 4 B(‘#CN#,‘||DOW2||)

B(‘#CND#,||DOW2||’) B(‘#CND#,‘||DOW2||) Table 4 B(‘#CND#,‘||DOW2||)

||EX||’ ‘||EX|| .OR. ‘|MASK| ‘||EX|| .OR. ‘|MASK| ‘||EX|| .OR. ‘|MASK|

|HI1|’ ‘|HI1| ‘//HTL(5)// - ‘|HYS| ‘//HTL(5)// - ‘|HYS|

|HI2|’ ‘|HI2| ‘//HTL(5)// ‘//THL(5)//

|LO1|’ ‘|LO1| ‘//LTL(5)// ‘//LTL(5)//

|LO2|’ ‘|LO2| ‘//LTL(5)// = ‘|HYS| ‘//LTL(5)// + ‘|HYS|

||MC||’ ‘||MC|| Table 4 0

||PC||’ ’||PC|| Table 4 0

B(j,|STBV|’), j = ‘|STB| + j-1, i in {1...5} B(j,‘|STBV|) Table 3 Table 3

B(j,|STBV|’),
NOT (j in {‘|STB| + i-1}, i in {1...5})

B(j,(‘|STBV|)
AND. ‘|UM|))

B(j,(‘||STW||
.AND. ‘|UM|))

B(‘|STB| + i-1,||STW||’), i in {1...5} B(‘|STB| + i-1,
(‘||STW|| .OR. ‘|UM|))

Table 3 Table 3

B(j,||STW||’), NOT (j in {‘|STB| + i-1}, B(i,(‘||STW|| .OR. ‘|UM|)) B(i,‘||STW||) B(i,‘||STW||)

B(‘|TIB|,||TIW||’) B(‘|TIB|,(‘||TIW||
.OR.‘#TMASK(‘|TIB|)#))

B(‘|TIB|,(‘||TIW||
.AND.‘#FMASK(‘|TIB|)#))

B(‘|TIB|,(‘||TIW||
.AND.‘#FMASK(‘|TIB|)#))

||HIF(1...5)||’ ‘||HIF(1...5)|| Table 2 Table 2

|I|’ ‘|I| 6 6

||LOF(1...5)||’ ‘||LOF(1...5)|| Table 2 Table 2

Middle Road Software, Inc.

David Lorge Parnas 51/67 Erlangen2012 Software System Engineering

Subtables For Nuclear Plant Code

• SOFTWARE QUALITY RESEARCH LABORATORY •

 University of Limerick 35 /53Luxinspectslides.fm
19 October 2005 22:48 More Tables

Table 2

!AbvHiHys(i)! !InHiHys(i)! !InNorm(i)! !InLoHys(i)! !BlwLoHys(i)!

||HIF(i)||’ .FALSE. ‘||HIF(i)|| .TRUE. .TRUE. .TRUE.

||LOF(i)||’ .TRUE. .TRUE. .TRUE. ‘||LOF(i)|| .FALSE.

Table 3

A* = [(‘||MC|| ≥ ‘|DEL|) OR (‘||MC|| < 0) OR (‘||PC|| + 1 ≥ ‘|PCL|) OR ((‘||PC|| +1) < 0)]

A NOT *A*

||PC||’ ‘|PCL| ‘||PC|| + 1

||MC||’ ‘|DEL| ‘||MC||

B(‘|PTB|,||DOW1||’) B(‘|PTB,(‘||DOW1|| .AND.‘#FMASK(‘|PTB|#)) B(‘|PTB|,‘||DOW1||
B(‘#CN#,||DOW2||’) B(‘#CN#,(‘||DOW2|| .AND.‘#FMASK(‘#CN#)#)) B(‘#CN#,‘||DOW2||
B(‘#CND#,||DOW2||’) B(‘#CND#,(‘||DOW2|| .AND.‘#FMASK(‘#CND#)#)) B(‘#CND#,‘||DOW2||

Table 4

 A* = [(‘||MC|| ≥ ‘|DEL|) OR (‘||MC|| < 0) OR (‘||PC|| + 1 ≥ ‘|PCL|) OR ((‘||PC|| +1) < 0)]

A NOT *A*

||PC||’ ‘|PCL| ‘||PC|| + 1

||MC||’ ‘|DEL| ‘||MC||

B(‘|PTB|,||DOW1||’) B(‘|PTB,(‘||DOW1|| .AND.‘#FMASK(‘|PTB|#)) B(‘|PTB|,‘||DOW1||
B(‘#CN#,||DOW2||’) B(‘#CN#,(‘||DOW2|| .AND.‘#FMASK(‘#CN#)#)) B(‘#CN#,‘||DOW2||
B(‘#CND#,||DOW2||’) B(‘#CND#,(‘||DOW2|| .AND.‘#FMASK(‘#CND#)#)) B(‘#CND#,‘||DOW2||

Middle Road Software, Inc.

David Lorge Parnas 52/67 Erlangen2012 Software System Engineering

Module Internal Design Documents
Design of a software component is documented by describing: (Many authors)

 • the hidden internal data structure,
 • the program functions of each externally accessible program, i.e their

effect on the hidden data structure,
 • an abstraction relation mapping between internal states and the

externally distinguishable states of the objects created by the module.
The data structure can be described by programming language declarations.
The functions are usually best represented using tabular expressions.
Easily extended to non-deterministic case using relations.

Middle Road Software, Inc.

David Lorge Parnas 53/67 Erlangen2012 Software System Engineering

Checking An Internal Design
Design documentation should allow us to verify the workability of a design.

The information is there for an informal check.
No examples yet.

How can the workability of a design be verified?

For all possible events, e, the following must hold:

AR(d1,t1) ∧ e(d1,d2) = AR(d2,t1.e)

Middle Road Software, Inc.

David Lorge Parnas 54/67 Erlangen2012 Software System Engineering

Additional Documents
 • In addition to the system requirements document, which treats

hardware and software as an integrated single unit, it is sometimes
useful to write a software requirements document

 • An informal document known as the module guide
 • A uses relation document, which indicates which programs are used

by each program is generally useful. The information is a binary
relation and may be represented in either tabular or graphical form.

 • In systems with concurrency, process structure documents are useful.
 • The “gives work to” document is useful for deadlock prevention.
 • Interprocess/component communication should also be documented

Middle Road Software, Inc.

David Lorge Parnas 55/67 Erlangen2012 Software System Engineering

Tabular Expressions For Documentation
Mathematical expressions that describe computer systems can become very
complex, hard to write and hard to read.
As first demonstrated in 1977, the use of a tabular format for mathematical
expressions can turn an unreadable symbol string into an easy to access
complete and unambiguous document.
Pilots were able to find 500 errors in our first draft.

Middle Road Software, Inc.

David Lorge Parnas 56/67 Erlangen2012 Software System Engineering

There Are Many Forms Of Tabular Expressions.
 • The grids need not be rectangular.
 • A variety of types of tabular expressions are illustrated and defined

[Jin].
 • [Jin], defines the meaning of these expressions by means of

translation schema to an equivalent conventional expression.
 • Good basis for tools.
 • The appropriate table form will depend on the characteristics of the

function being described.

Middle Road Software, Inc.

David Lorge Parnas 57/67 Erlangen2012 Software System Engineering

Tables Like This Can Be Found On The Internet
Ticket Price 1 Passenger 2 Passengers 3-5 Passengers 6 o r m o r e

Passengers
0 - 100
101 - 200
201 - 300
301 and more

35 45 55 65

40 50 60 70
45 55 65 75
50 60 70 7 0 + 1 0 p e r

passenger

Such tables are familiar and intuitive.

Middle Road Software, Inc.

David Lorge Parnas 58/67 Erlangen2012 Software System Engineering

This Says The Same Thing

P=1 P=2 2 < P < 6 P > 5

0 < T ≤ 100

100 < T ≤ 200

200 < T ≤ 300

T > 300

35 45 55 65

40 50 60 70

45 55 65 75

50 60 70 70 + 10 ×(P-5)

However, the above is a mathematical expression.

Middle Road Software, Inc.

David Lorge Parnas 59/67 Erlangen2012 Software System Engineering

This Too Is A Mathematical Expression

BMI
T[1] p<

88

88≤

p<

110

110

≤p<

121

121

≤p<

132

132

≤p<

154

154

≤p<

176

176

≤p<

198

198

≤p<

220

220

≤p<

110

242

≤p<

265

p>

265

T[4] T[0] T[2]

1.9≤m<2 very talll

1.8≤m<1.9 talll

1.7≤m<1.8 avg

1.6≤m<1.7 middle

1.5≤m<1.6 short

m≤1.5 very short

k<

40
40
≤
k<
50

50
≤k
<
55

55
≤k
<
60

60
≤k
<
70

70
≤k
<
80

80
≤k
<
90

90≤

k<

100

100

≤k<

110

110

≤k<

120

k>

120
T[3]

underweight low
borderline

normal low

overweight

overweight very

overweight
OBESE!

Middle Road Software, Inc.

David Lorge Parnas 60/67 Erlangen2012 Software System Engineering

A Circular Table

Middle Road Software, Inc.

David Lorge Parnas 61/67 Erlangen2012 Software System Engineering

Is My Proposal Different From “Formal Methods”?
It is no less formal. In fact, it is arguably more formal.
However, there are important differences:

 • Intended for documentation, not proof or models
 • Careful attention to document content (readers and writers)
 • Designed for use as a reference document
 • Concern for readers and writers and their needs leads to structured documentation.
 • Developed in practice, formalized later
 • Evolved from practical experience, strengthened through theory
 • Engineering mathematics, not philosophers/logicians mathematics
 • Mathematics is general, not tailored to program description.

The phrase “formal methods” was a mistake. Engineers always use
mathematics; developers who do not are not Engineers.
It is not just the tables that make it different.

Middle Road Software, Inc.

David Lorge Parnas 62/67 Erlangen2012 Software System Engineering

The Bottom Lines:

Producing no documentation gets developers in trouble.
Producing bad documentation might be worse.
Producing good documentation:

 • helps them to get the requirements right
 • helps them to get interfaces right
 • helps them to in their testing
 • helps them to in their inspections
 • helps them in maintenance and upgrades
 • helps them manage a product line effectively.

Define the content of each document (as illustrated)
Use appropriate (mathematical) tabular expressions

Middle Road Software, Inc.

David Lorge Parnas 63/67 Erlangen2012 Software System Engineering

Management’s Role In Document Driven Design

Management is getting something done without knowing exactly what
it is (and much more).
Management can undermine any effort by either not demanding it, not
leaving time for it, or not supporting it.

 • Insist that if it isn’t documented, it is not done.
 • Schedule document reviews
 • Insist that software testers test against documents using the

documents to generate oracles and test cases.
 • Insist on document guided inspections for critical parts.
 • Allow no change without revising the associated documents.

Without management support it won’t work!

Middle Road Software, Inc.

David Lorge Parnas 64/67 Erlangen2012 Software System Engineering

Research Problems

More documents (e.g. sequential process structure)
Various forms of composition given these documents
Reliability given these documents
More table types
More examples (publishable)
Improved notation
Tools that are more than Masters theses

Middle Road Software, Inc.

David Lorge Parnas 65/67 Erlangen2012 Software System Engineering

Summary And Outlook
It is important to the future of software engineering to learn how to replace
today’s documentation with precise professional design documents.
Documents must have a mathematical meaning.
The expressions can be in a tabular formats.
These have proven to be practical over a period of more than 30 years.
There is much room for improvement and research is needed.
No more “cut and try” software development.
Software has become a serious industry that produces critical products.
The first step towards maturity must be to take documentation seriously
When our documentation improves, the software quality will improve too.

Middle Road Software, Inc.

David Lorge Parnas 66/67 Erlangen2012 Software System Engineering

Real Improvement Is Difficult
“Nobody” does it that way.

 • “Nobody” builds really good software (error free, easily maintained)
We don’t have time to write documents that nobody reads.

 • “Never have time at the start, always have time at the end” (B.O. Evans via F.P. Brooks)
“I have no idea how to do that” (Ph.D. developer, author)

 • Nobody taught you how! Nobody is teaching how to document software.
Dilbert’s view on making real changes:

 • Ideas that would change the way we work can be very threatening.

Middle Road Software, Inc.

David Lorge Parnas 67/67 Erlangen2012 Software System Engineering

