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Move to Multi-Core/Multi-Processor

� Current challenge:
� Performance boost achieved with concurrency only
� But: Concurrent programming is still very complex

� Ongoing development:
� Establishment of concurrent programming languages
� Extension of the set of utilities for concurrency

� A proposed utility:
� Transactional Memory (TM) to improve concurrency
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Transactional Memory

� Transactional Memory
� Transactions in memory (CC with rollbacks)
� Originally proposed as hardware extension
� Common as Software Transactional Memory (STM)

� Promoted as a solution to known problems:
� Deadlocks
� Bad scalability

� Unfortunately has its very own problems
� Blocking interferes with transaction mechanisms
� Irrevocable actions are incompatible with rollbacks
� Privatization causes data inconsistency
� . . .
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Aims and Objectives

� Important aspects for the acceptance of new technologies
� Learning expense
� Programming effort
� Legacy support
� . . .

� Address problems using a programming model providing:
� Seamless integration with a common programming language
� Simple API

I Transparent instrumentation
I Default: Error prevention at acceptable performance
I Low level optimization API for expert programmers

� Support of modular software designs
� No specific restrictions on TM mechanism

� Focus here: Privatization and publication problem
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Privatization/Publication Problem

Privatization of a List Element
Initially: top.data = 6; top.next.data = 7
Thread T1 Thread T2

1atomic {
2
3elem = l i s t . top ;
4l i s t . top = elem . next ;
5}
6elem . data = 42;
7
8

1
2atomic {
3elem = l i s t . top ;
4
5
6
7va l = elem . data ;
8}

� Can variable val get the value 42?
� Fundamental problem: Unprotected shared variables
� Known solution: Strong isolation
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Strong Isolation

� Weak Isolation:
� Isolation of transactions from each other

� Strong Isolation:
� Isolation of transactions from each other
� + Isolation of transactions from non-transactional operation

� Runtime-level realisation requires
� Observation of r/w access

I E.g. instrumentation of read/write instructions
I Or modified runtime environment (e.g. JVM-TI agent)

� Or single global lock semantics
I Restrictions on TM implementation
I Reduced concurrency
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Existing Programming Models

Block-oriented

1
2
3atomic {
4/ / . . .
5}
6
7

Object-oriented

1@Transact ionalObject
2class MyObject {
3@TransactionalMethod ( Readonly )
4public void method ( ) {
5/ / . . .
6}
7}

Type-level enforcement of strong isolation

1atomic {
2stm_operat ion ( )
3stm_operat ion ( )
4. . .
5stm_operat ion ( )
6}
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Isolation by Separation

� Separating a program into:
� Transactional domain (TD): Tx code and data
� Non-transactional domain: Non-tx code and data

� Scope of a transaction
� Entering the TD starts transaction
� Leaving the TD finishes transaction

� Provides strong isolation
� Avoids privatization issues
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Java-Specific Programming Model

Declaration

1class TxObj implements Transac t iona l {
2/ / t x code and data
3}

� Transactional object constitute transactional domain
� Additional programming rules preserve strong isolation
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Rules for Transactional Objects

� Non-final variables must be private
� No access to non-transactional classes/objects
� Parameters of methods or constructors:

� Primitive types or java.lang.String
� References on transactional objects
� Arrays need a transactional wrapper object

� No inheritance between domains
� Only exception: java.lang.Object

� . . .
� Those rules are validated by a tool!
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Privatization Support

� A proposed API for expert programmers
� Supports two modes of transactional objects

� Shared: Object protected against concurrent access
� Privatized: Object to be used by the owning thread only

� Proposed (revised) functionallity for transactional object
� privatize object
� publish object
� check if the object is privatized by given thread
� check if the object is shared
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Toolchain

Build process

� Java Transactional Domain (JTD) Toolchain
� Based on modified AtomJava (Univ. of Washington)
� Integrated with Eclipse
� Provides

� Validation against programming rules
� Automated source code instrumentation
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Evaluation

� Evaluated ours (jtd) vs.
� Original (atomjava)
� BC instr. (multiverse)
� Java monitors (sync)

� Test platform
� 2 x Intel quadcore @

3GHz
� 64bit Linux, kernel 2.6.26
� 64bit Sun JVM 1.6.0_21
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� Average over 107 iterations à 100 transactions
� Transaction of around 10 bytecode instructions
� Overhead: 35 − 75ns/call
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Summary

� A safe programming model for transactional memory
� Ensures strong isolation
� Prevents privatization problem
� Supports software modularization
� No restrictions on underlying TM algorithm

� A prototypical toolchain for Eclipse
� Validation integrated with Java editor
� Automated source code instrumentation
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Future Work

� Proceede with reviewing of existing approaches
� Condition-driven synchronization
� Irrevocable actions
� Long running transactions
� Application-level debugging
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