
Avoiding Publication and
Privatization Problems on Software

Transactional Memory
Holger Machens and Volker Turau

Frühjahrstreffen 2011 – GI/ITG Fachgruppe Betriebssysteme
8th April, 2011

TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology

Overview

1 Aims and Objectives

2 State of the Art

3 Proposed Programming Model

4 Prototype

5 Conclusion

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 11

1

Aims and Objectives

Aims and ObjectivesAims and Objectives

Move to Multi-Core/Multi-Processor

� Current challenge:
� Performance boost achieved with concurrency only
� But: Concurrent programming is still very complex

� Ongoing development:
� Establishment of concurrent programming languages
� Extension of the set of utilities for concurrency

� A proposed utility:
� Transactional Memory (TM) to improve concurrency

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 22

Aims and ObjectivesAims and Objectives

Transactional Memory

� Transactional Memory
� Transactions in memory (CC with rollbacks)
� Originally proposed as hardware extension
� Common as Software Transactional Memory (STM)

� Promoted as a solution to known problems:
� Deadlocks
� Bad scalability

� Unfortunately has its very own problems
� Blocking interferes with transaction mechanisms
� Irrevocable actions are incompatible with rollbacks
� Privatization causes data inconsistency
� . . .

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 33

Aims and ObjectivesAims and Objectives

Aims and Objectives

� Important aspects for the acceptance of new technologies
� Learning expense
� Programming effort
� Legacy support
� . . .

� Address problems using a programming model providing:
� Seamless integration with a common programming language
� Simple API

I Transparent instrumentation
I Default: Error prevention at acceptable performance
I Low level optimization API for expert programmers

� Support of modular software designs
� No specific restrictions on TM mechanism

� Focus here: Privatization and publication problem

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 44

2

State of the Art

State of the ArtState of the Art

Privatization/Publication Problem

Privatization of a List Element
Initially: top.data = 6; top.next.data = 7
Thread T1 Thread T2

1atomic {
2
3elem = l i s t . top ;
4l i s t . top = elem . next ;
5}
6elem . data = 42;
7
8

1
2atomic {
3elem = l i s t . top ;
4
5
6
7va l = elem . data ;
8}

� Can variable val get the value 42?
� Fundamental problem: Unprotected shared variables
� Known solution: Strong isolation

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 55

State of the ArtState of the Art

Strong Isolation

� Weak Isolation:
� Isolation of transactions from each other

� Strong Isolation:
� Isolation of transactions from each other
� + Isolation of transactions from non-transactional operation

� Runtime-level realisation requires
� Observation of r/w access

I E.g. instrumentation of read/write instructions
I Or modified runtime environment (e.g. JVM-TI agent)

� Or single global lock semantics
I Restrictions on TM implementation
I Reduced concurrency

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 66

State of the ArtState of the Art

Existing Programming Models

Block-oriented

1
2
3atomic {
4/ / . . .
5}
6
7

Object-oriented

1@Transact ionalObject
2class MyObject {
3@TransactionalMethod (Readonly)
4public void method () {
5/ / . . .
6}
7}

Type-level enforcement of strong isolation

1atomic {
2stm_operat ion ()
3stm_operat ion ()
4. . .
5stm_operat ion ()
6}

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 77

3

Proposed Programming Model

Proposed Programming ModelProposed Programming Model

Isolation by Separation

� Separating a program into:
� Transactional domain (TD): Tx code and data
� Non-transactional domain: Non-tx code and data

� Scope of a transaction
� Entering the TD starts transaction
� Leaving the TD finishes transaction

� Provides strong isolation
� Avoids privatization issues

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 88

Proposed Programming ModelProposed Programming Model

Java-Specific Programming Model

Declaration

1class TxObj implements Transac t iona l {
2/ / t x code and data
3}

� Transactional object constitute transactional domain
� Additional programming rules preserve strong isolation

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 99

Proposed Programming ModelProposed Programming Model

Rules for Transactional Objects

� Non-final variables must be private
� No access to non-transactional classes/objects
� Parameters of methods or constructors:

� Primitive types or java.lang.String
� References on transactional objects
� Arrays need a transactional wrapper object

� No inheritance between domains
� Only exception: java.lang.Object

� . . .
� Those rules are validated by a tool!

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 1010

Proposed Programming ModelProposed Programming Model

Privatization Support

� A proposed API for expert programmers
� Supports two modes of transactional objects

� Shared: Object protected against concurrent access
� Privatized: Object to be used by the owning thread only

� Proposed (revised) functionallity for transactional object
� privatize object
� publish object
� check if the object is privatized by given thread
� check if the object is shared

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 1111

4

Prototype

PrototypePrototype

Toolchain

Build process

� Java Transactional Domain (JTD) Toolchain
� Based on modified AtomJava (Univ. of Washington)
� Integrated with Eclipse
� Provides

� Validation against programming rules
� Automated source code instrumentation

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 1212

PrototypePrototype

Evaluation

� Evaluated ours (jtd) vs.
� Original (atomjava)
� BC instr. (multiverse)
� Java monitors (sync)

� Test platform
� 2 x Intel quadcore @

3GHz
� 64bit Linux, kernel 2.6.26
� 64bit Sun JVM 1.6.0_21

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8

ns

threads

atomjava
jtd

multiverse
sync

� Average over 107 iterations à 100 transactions
� Transaction of around 10 bytecode instructions
� Overhead: 35 − 75ns/call

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 1313

5

Conclusion

ConclusionConclusion

Summary

� A safe programming model for transactional memory
� Ensures strong isolation
� Prevents privatization problem
� Supports software modularization
� No restrictions on underlying TM algorithm

� A prototypical toolchain for Eclipse
� Validation integrated with Java editor
� Automated source code instrumentation

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 1414

ConclusionConclusion

Future Work

� Proceede with reviewing of existing approaches
� Condition-driven synchronization
� Irrevocable actions
� Long running transactions
� Application-level debugging

Holger Machens Avoiding Publication and Privatization Problems on Software Transactional MemoryHolger Machens Avoiding Publication and Privatization Problems on Software Transactional Memory 1515

Avoiding Publication and
Privatization Problems on Software

Transactional Memory
Holger Machens and Volker Turau

Frühjahrstreffen 2011 – GI/ITG Fachgruppe Betriebssysteme
8th April, 2011

Holger Machens
Research Assistant

Phone +49 / (0)40 428 78 3448

e-Mail machens@tu-harburg.de

http://www.ti5.tu-harburg.de/staff/machens

TUHHTUHHInstitute of TelematicsInstitute of Telematics
Hamburg University of TechnologyHamburg University of Technology

mailto:machens@tu-harburg.de
http://www.ti5.tu-harburg.de/staff/machens

	Aims and Objectives
	State of the Art
	Proposed Programming Model
	Prototype
	Conclusion

