Über die Bedeutung des Turbomodus aktueller Mehrkernprozessoren für Betriebssysteme

Jan Schönherr Jan Richling

Kommunikations- und Betriebssysteme Technische Universität Berlin

Gero Mühl

Architektur von Anwendungssystemen Universität Rostock

Matthias Werner

Professur für Betriebssysteme Technische Universität Chemnitz

Agenda

- > Turbo mode
 - > Definition
 - > Implementations
- > Handling by operating systems
- > Currently unused opportunities
 - > Performance
 - > Energy efficiency
 - > Multi-socket systems
- > Summary

Turbo mode

> Ability to distribute power budget dynamically
 > (realized in hardware)

3

Intel's Turbo Boost Technology

- > Processor monitors itself
 - > Power, current, temperature
- > Highest frequency within physical margins is selected
 - > Additionally: artificial limit on the number of active cores
 - > Nominal freq. <= actual freq. <= Turbo freq.
- > Transparent for OS
 - > Cannot explicitly select frequencies above nominal frequency
 - > Cannot (easily) determine actual frequency
 - > On/Off via P-state mechanism

AMD's Turbo Core

- Simple logic depending on the number of active cores
 If enough cores are sleeping, the remaining ones are boosted
- > No intermediate frequencies between nominal and turbo frequency
- > On/off via MSR
- > Only cores in highest OS visible P-state are boosted
- > Easy to determine actual frequency
- > Deterministic (compared to Intel)

Current OS support for Turbo

- > None :-(
- > Not entirely true
 - > Both, Turbo Boost and Turbo Core, are enabled by existing mechanisms
 - Power saving logic increases effectiveness of Turbo
 OSs try to keep individual cores idle (to some extend)
- > Current situation
 - > Turbo mode always utilized in lightly loaded scenarios
 - > Turbo mode never (completely) utilized in fully loaded scenarios
 - > CPUs reach their TDP limit more often
 - > Normally reduced energy efficiency

Turbo for selected processes

- > Easy for AMD processors
 - > Enable Turbo
 - > Put enough cores to sleep
 - > Set some cores to the highest P-state
 - > Set remaining cores to another P-state
- > Advantages
 - > Easy to realize in OSs
 - > Can reuse existing affinity management
- > Disadvantages
 - > Only one voltage domain in AMD processors
 - > Not most energy efficient solution for non-boosted cores

7

Turbo for selected processes

- > In case of only one voltage and/or frequency domain
 - > Group processes into sets
 - > At some time
 - > Enable turbo
 - > Put enough cores to sleep
 - > Execute set of selected processes
 - > At another time
 - > Disable turbo
 - > Select an energy efficient frequency for the set
 - > Execute the set
- > Advantages
 - Most energy efficient solution under given performance constraints
- > Disadvantages
 - > Requires a new (or heavily modified) scheduler

Preliminary evaluation

- > Foreground tasks take full advantage of Turbo
- > Enough background tasks compensate additional energy consumption

9

Energy efficient frequencies

- Energy efficient frequency depends on
 - > Currently executed workload
 - > Processor
- > CPU-bound
 - > Profits from higher frequency
 - Until voltage is raised beyond a certain level
- > Memory-bound
 - > Profits from lower frequencies
 - > Until static power consumption prevails
- > Unverified theory: Processors of the same family exhibit similar behavior, i. e. the same energy efficient frequency

=> For some workloads and processors the energy efficient frequency is a turbo frequency

Multi-socket systems

- > Additional scheduling considerations
 - > Spread load to utilize Turbo?
 - > Or concentrate load to conserve energy?
 - > "Power" as a resource
 - > Similar to cache or memory bandwidth
- > (Intel) Processors are no longer symmetric
 - Some can hold a higher frequency in certain workloads than others

Summary

- > Turbo mode achieves higher performance in many workloads out of the box – at the cost of a much lower energy efficiency
- > Adequate handling can deliver even higher performance in some workloads and regain energy efficiency

- > Current and future work
 - > Adequate Turbo support for Linux
 - > Application <=> OS interfaces

