
Power Management in Reflex

André Sieber, Karsten Walther, Stefan Nürnberger, Jörg Nolte
Distributed Systems/Operating Systems group, TU Cottbus

{as, kwalther, snuernbe, jon}@informatik.tu-cottbus.de

Abstract
Energy consumption is a crucial factor for the lifetime

of many embedded systems, especially wireless sensor net-
works. Most modern microcontrollers provide various low
power sleep modes. Utilizing them can lead to great energy
savings. In this paper we present an approach for power man-
agement in embedded systems, based on the event-driven op-
erating system REFLEX. The implicit power management is
mostly hardware independent, lightweight and chooses effi-
ciently the optimal power saving mode of the microprocessor
automatically.

1 Introduction
Typical sensornet applications such as environmental

monitoring demand that sensor nodes should work for month
or even years with a single battery. Thus, saving energy is es-
sential to archive this goal. Even in embedded systems with
external power supply, saved energy helps to reduce costs.
Modern microcontrollers provide the programmer with fine
grained control over components and sleep modes. To utilize
these features the operating system should at least be able to
provide the application with power saving mechanisms. It
would be even better to do this implicitly without any need
of control from the programmer.

Since most microcontrollers support a variety of sleep
modes with different energy footprints, the selection of the
mode can have an intense effect on the lifetime of battery
powered devices. If the decision was wrong, the energy sav-
ings could be marginal or, even worse, events can get lost.

2 Related Work
The most common operating system for wireless sensor

nodes is TinyOS[1], it features a wide range of software
modules and runs on various platforms. As it is an event-
based operating system, the scheduler of TinyOS puts the
controller to sleep if thetask-queue is empty and thus
no work has to be done. TinyOS is capable of computing
the deepest possible sleep mode autonomously. To do so,
all components that change the state of the hardware and
might influence the deepest possible sleep mode have to call
theMcuPowerState.update() function, resulting in its re-
computation.

The computation is done by reading all device regis-
ters. Because the update operation is executed atomically
it can produce a significant overhead [2]. Additionally, the
function is hardware dependent and must be reimplemented

for every platform. ThePowerOverride.lowestState()
function makes it possible for higher level components to in-
fluence the chosen sleep mode.

Other event-driven sensor node operating systems like
SOS[3] leave the power management to the programmer
and do not implement any deepest sleep mode computation.
Contiki[4] can not take advantages from any sleep mode be-
cause of its polling methodology for interrupt handlers.

In thread based operating systems for deeply embedded
systems it is more challenging to determine the possibilityof
going into a certain sleep mode. The scheduler has to deter-
mine if all threads are blocked for some reason (e.g. waiting
on I/O) or are idle. Mantis [7] has support for sleep modes.
It provides amos thread sleep() function, similar to the
UNIX sleep(). Every thread has to call it with the desired
duration of the sleep period. Mantis only distinguishes be-
tween an idle sleep mode and a deeper sleep mode. The first
is used if the system waits on IO, the second if all threads
have called themos thread sleep() function.

3 Power Management in Reflex
REFLEX (Real-timeEventFLow EXecutive) is an oper-

ating system implemented in C++, targeting deeply embed-
ded systems and wireless sensor nodes. It is based on the
so called event flow model presented in [5]. Initial source
of all activity in the system are interrupts. In REFLEX so
called activities are schedulable entities, which are triggered
if something was posted to their associated event buffers.

The power management in REFLEX divides two abstrac-
tions, a system view and a user view. The system view is re-
sponsible for the determination of the deepest possible sleep
mode. The user view provides the programmer with two in-
struments, namely groups and modes, to ease the handling of
all hard and software components.

3.1 System View
The system provides the classEnergyManageAble, each

class derived from it is concerned by the power management.
Every instance of a component has a variable which spec-

ifies the deepest possible sleep mode that may be used when
it is active. The power manager contains a table with coun-
ters for every available sleep mode of the microcontroller
used. If a component is enabled it signals its deepest possi-
ble sleep mode to the power manager by increasing the cor-
responding counter in the sleep mode table. If a component
is disabled, the counter of its sleep mode is decreased. If no

event is pending, the scheduler calls thepowerDown() func-
tion. This power manager function iterates the sleep mode
table starting at the lightest mode. The first value different
from zero is the deepest possible sleep mode. In contrast to
TinyOS, it is not necessary to evaluate the complete machine
state, which makes the changing of the lowest possible sleep
mode very lightweight.

The sleep mode counter table is the only hardware spe-
cific part of the power manager, since it can have a different
size depending on the microcontroller used.

Since the initial source for activity are the interrupts, they
define the deepest possible sleep mode. In general there are
two types of interrupts, primary and secondary. The first are
caused by external events, the second are a result of soft-
ware events. E.g. the TX interrupt of a serial connection has
only to be active when a send operation is in progress, if it
is finished, the driver of the serial connection can deactivate
the interrupt and possibly change the deepest possible sleep
mode. Thus the power management approach is implicit for
secondary interrupts, because the drivers know when a inter-
rupt has to be enabled.

Primary interrupts can not be deactivated implicitly. Their
state is determined by the current stage of the application.
Sampling of sensors and sleeping for a given time needs dif-
ferent interrupts at different times. The decision which in-
terrupt has to be active must be decided by the application
programmer.

3.2 User View
At startup, each manageable object is registered with the

power management and assigned to one or more programmer
defined groups .

During operation, groups can be independently activated
and deactivated. This allows to easily activate or deactivate
any number of objects with only one method call. If a man-
ageable object is member of multiple groups it is only deac-
tivated when all of these groups are deactivated.

Modes are defined to switch easily between active groups
and thus utilizing different hardware configurations. This
makes it possible to divide the execution of an application
into different phases, while ensuring that the hardware com-
ponents are active when demanded. The programmer is re-
sponsible for changing the modes. For example a timer
driven module can be used for mode changes.

4 Evaluation
We compared our approach with TinyOS 2.0.2 us-

ing a simple sense and send application utilizing the im-
plicit power management of both systems running on a
TMoteSky[6]. It samples the SHT11 temperature and hu-
midity sensor of the TMoteSky every two seconds, aggre-
gates these values four times and sends them over the serial
connection at the beginning of the fifth phase. The results
are shown in figure 1 and table 1.

For the given application the results show that the power
management of REFLEX is more effective than that of
TinyOS. The REFLEX application consumes about 38% re-
spectively 51% less energy, depending on the voltage. The
main reason is that the power consumption during sleep is

−1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10

po
w

er
 c

on
su

m
pt

io
n

in
 m

W

time in s

TinyOS power management
Reflex power management

Figure 1. Power consumption of TinyOS andREFLEX at
1MHz and 3V

significantly higher in TinyOS than in REFLEX. This is be-
cause the serial connection was only used unidirectional,
which was accounted for by Reflex, so the driver module
could be deactivated when there was no data to transmit.
The difference in power consumption comes mainly from
the baudrate generator running all the time in the TinyOS
application. At the beginning of the send operation there isa
higher spike in the reflex curve due to the necessary startup
of the baudrate generator.

Reflex TinyOS
TMoteSky 2.2V @ 1MHz 0.193 0.316
TMoteSky 3V @ 1MHz 0.281 0.575

Table 1. Average power consumption of TinyOS andRE-
FLEX in mW per second

Acknowledgments
This work was partially supported within the TANDEM

project by the InnoProfile program of the German Federal
Ministry of Education and Research.

5 References
[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System Archi-

tecture Directions for Networked Sensors. In the9th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IX), 2000.

[2] R. Szewczyk, P. Levis, M. Turon, L. Nachman, P. Buonadonna, V. Handziski.
TinyOS Microcontroller Power Management Documentation TEP112. Web-
page http://www.tinyos.net/tinyos-2.x/doc/html/tep112.html

[3] C.-C. Han, R. S. Ram Kumar, E. Kohler, and M. Srivastava. A dynamic oper-
atingsystem for sensor nodes.In Proc. of the 3rd international conference on
Mobile systems, applications, and services MobiSys, 2005.

[4] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight andexible
operating system for tiny networked sensors. InProceedings of the First IEEE
Workshop on Embedded Networked Sensors, 2004.

[5] K. Walther and J. Nolte. A flexible scheduling framework for deeply embed-
ded systems. InIn Proc. of 4th IEEE International Symposium on Embedded
Computing, 2007.

[6] TMote Sky Datasheet,
Moteiv Corperation, Webpage http://www.sentilla.com/moteivtransition.html,
2006.

[7] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruen-
wald, A. Torgerson, R. Han. MANTIS OS: An Embedded Multithreaded Op-
erating System for Wireless Micro Sensor Platforms. InACM/Kluwer Mobile
Networks Applications (MONET), Special Issue on Wireless Sensor Networks,
2005,

