
Resource Conscious Scheduling for Energy Efficiency
on Multicore Processors

Andreas Merkel Jan Stoess Frank Bellosa
University of Karlsruhe

Extended Abstract
Today’s operating system schedulers treat cores of a chip
multicore processor (CMP) largely like distinct physical
processors. Yet, there are some interdependencies be-
tween cores that need be taken into account for optimal
performance and energy efficiency.

The cores of a multicore chip share resources such as
caches and memory interfaces. This is likely to cause con-
tention between the cores if activities with similar char-
acteristics, for example several memory-bound programs,
are running together. Contention slows down the execu-
tion of the programs, and, aside from the performance
penalty, also induces inefficient use of energy, since cores
waiting for a resource to become available dissipate power
without making progress.

A second cross-effect, also related to energy efficiency,
is the fact that many chips only allow setting a single fre-
quency and voltage for the entire chip, meaning that all
cores need to run at the same frequency and voltage, since
allowing multiple frequencies and voltages would intro-
duce additional hardware complexity.

The efficiency in terms of energy and runtime with
which the processor can execute a program at a certain
frequency and voltage setting, again strongly depends on
the program’s characteristics, in particular on the fre-
quency of memory accesses. Memory-bound programs
do not suffer much slowdown if the processor frequency
is reduced, since the speed of their execution is limited
by the speed of memory rather than by processor speed,
which allows energy-efficient execution at low processor
frequencies.

Since the scheduler is the component of the operat-
ing system responsible for deciding which tasks run on
the cores simultaneously, scheduling is crucial for perfor-
mance and energy efficiency. For a multicore chip that of-
fers only chip-wide frequency scaling, the question arises
whether it is advantageous to run tasks with similar char-
acteristics together in order to run the chip at the corre-
sponding optimal frequency. For instance, we could co-
schedule memory-bound tasks, which run most efficiently
at a low frequency, and co-schedule compute-bound tasks,
which run most efficiently at a high frequency.

We investigate the cross-effects between applications
running on a multicore system, considering resource con-
tention and the technical constraint of chip-wide fre-
quency and voltage settings. Our analysis of an Intel
Core2 Quad processor finds that memory bandwidth is the
most crucial resource on this platform, and that schedul-
ing for avoiding contention is more important than being
able to select a common best frequency. We find that in
order to optimize the product of runtime and expended
energy (energy delay product, EDP), the main goal must
be to avoid contention by combining tasks with different
characteristics. Only if nothing but memory-bound tasks
are available, it is beneficial to apply frequency scaling.

In previous work, we have proposed the concept of task
activity vectors to represent utilization of chip resources
caused by tasks. Based on the information about resource
utilization provided by activity vectors, we propose poli-
cies for avoiding resource contention by co-scheduling
tasks with different characteristics. Our co-scheduling
policy synchronizes the scheduling decisions of cores be-
longing to the same chip, and selects tasks utilizing differ-
ent resources for simultaneous execution. In addition, a
modified load balancing policy that is aware of task char-
acteristics makes sure that tasks of different characteris-
tics are available on each core.

In situations when contention cannot be avoided be-
cause of workloads containing too many memory-bound
tasks, we take advantage of frequency and voltage scal-
ing as a fallback solution. For this purpose, we apply a
heuristic that lowers the frequency when only memory-
bound tasks are running.

We have extended the Linux 2.6.22 kernel scheduler
to support our new strategies. We further use a recent
version of the KVM virtual machine monitor to extend
the scheduling support from individual tasks to com-
plete software environments running in virtual machine
instances, and leverage virtual machine live migration
to make placement decisions not only between differ-
ent CPUs of the same node, but also across individual
nodes. An evaluation of our policies using SPEC CPU
2006 benchmarks reveals that our policies manage to re-
duce EDP considerably in comparison to standard Linux
scheduling.


