

Many-core systems and their challenges for OS

Klaus Danne

12. November 2009

Herbsttreffen Gesellschaft für Informatik Fachgruppe Betriebssysteme

Intel Braunschweig

- Since 2000 (Intel acquired Giga, HC 30)
- Today, HC ~100
 - ~50 in Intel Labs
 - ~50 in product groups
- Intel Germany Research Center
 - German part of Intel Labs
 - Responsible for Research and Technology Development
 - Engage & collaborate with Academia
 - Est. 2005
 - Intel's largest European Research site

Tera-Scale Computing Research

Microprocessor

Essential Scalable memory Multi-core architectures Specialized cores Scalable fabrics Energy efficient circuits

Complementary Si Process Technology CMOS VR Resiliency

Platform

Essential 3D Stacked Memory Cache Hierarchy Virtualization/Partitioning Scaleable OS's I/O & Networking Energy efficient circuits

> Complementary CMOS Radio Photonics

Programming

Essential Speculative Multithreading Transactional memory Workload analysis Compilers & Libraries Tools

<u>Complementary</u> Diamond media indexing Activity Recognition Usage Models

100+ Projects Worldwide

IGRC Focus

Outline

Microprocessor power challenge

Many-cores power advantage
Specialized cores
Heterogeneous systems

OS challenges

Scheduling to heterogeneous system
Power management

Moore's Law Motivates Multi-Core

Power Limitation

- Max power envelope is limited (by cost)
- End of frequency paradigm
 - Power is linearly related to frequency with no voltage scaling
 - Power is cubically related to frequency and voltage scaling
 - Performance is not linearly related to frequency

Multi core power advantage

- Lower frequency reduces power over proportionally
- 2 slow cores can deliver same performance as 1 fast core at less power, same architecture & technology

Multi core power advantage

- Smaller cores reduce power over proportionally
- 2 small cores can deliver more performance as 1 complex core at same power, area, frequency, technology

Multi-core challenges

- Interconnect and communication
 - power overhead
 - communication overhead
 - -> efficient network to connect many cores
- Parallel software
 - Legacy software is often single threaded
 - Amdahl's law limits speed up by parallelization
 - ...but many future workloads have parallel nature
 - Parallel programming challenges

A Tera-scale Platform Vision

Platform power management

Power constraint => can't run all cores at full speed

- Some power management done at device level
 - DVFS (e.g. Turbo Boost Technology)
 - Fast control loops; avoid permanent damage
- Today: processors offers ACPI interface to OS
 - P-state (voltage/frequency pair) and C-state
 - P-state may be not per core but per cluster
- Tomorrow: more advanced interfaces may be required to measure TDP and control performance

Fine Grain Power Management example of 80 tile 65nm research chip

- Novel, modular clocking scheme saves power over global clock
- New instructions to make any core sleep or wake as apps demand
- Chip Voltage & freq. control (0.7-1.3V, 0-5.8GHz)

Dynamic sleep

STANDBY:

Memory retains data
50% less power/tile
FULL SLEEP:
Memories fully off
80% less power/tile

21 sleep regions per tile (not all shown)

Industry leading energy-efficiency of 16 Gigaflops/Watt

OS challenges – topology

- Scheduling in heterogeneous systems
 - -NUMA, SMP, SMT
- Asymmetric multi core
 - Performance
 - ISA extensions

[src: Siddha et. el., ITJ07]

[Li07] Efficient OS Scheduling for Performance Asymmetric Multi-Cores [Li08] OS Support for Shared-ISA Asymmetric Multi-Cores

OS challenges – power management

- Power constraint => can't run all cores at full speed
- OS should optimize for performance and power
- Platform characteristics:
 - DFVS performance states, processor power states
 - Penalty of transition
 - Asymmetric power efficiency of cores
 - Dynamic-, leakage-power, temperature
- Application characteristics:
 - Application threads' demands, dependencies
 - CPU-, MEM-, I/O-bound
 - Observe at runtime

OS power aware example

- 2 package SMP platform with Intel Core2 quad processors
- 4 tasks
- Assignment strategies:
 - 1. Different L2 caches
 - high performance
 - 2. Same package
 - low power
- Workload dependent
- Similar problem for multicore on die

[src: Siddha et. el., ITJ07]

Two-frequency approach

- Many core platform supporting per core:
 - f = full speed
 - f/2, at ~25% of power
 - off, saving leakage
- Just 2 voltage levels
- Simple synchronous interfaces

[src: S. Borkar DAC07]

- How will OS optimal select settings?
- Further HW support desired?

Thread migration approach

Exploiting fine-grained application variability

[Rangan et. al., ISCA07] *Thread Motion: Fine-Grained Power Management for Multi Core Systems* [Chaparro et. al., TPDS07] *Understanding the Thermal Implications of Multicore Architectures*

Summary

Future devices will likely be _power constraint (not all cores at full speed) _asymmetric (big, small, special cores)
OS should consider _Platform topology/asymmetry _Power-budget, -characteristics, -efficiency _Application behavior, needs, dependencies

