
A Self-Management Framework for Virtual
Machine Environments

Dan Marinescu and Markus Schmid

Wiesbaden University of Applied Sciences
Distributed Systems Lab

Kurt-Schumacher-Ring 18, D-65197 Wiesbaden, Germany
{dan.marinescu,schmid}@informatik.fh-wiesbaden.de

Abstract. In this paper, we present our design for a modular frame-
work for autonomic QoS management of virtual machine environments.
The framework separates the management APIs provided by individ-
ual virtual machine technologies from the high-level control algorithms,
which makes the design of generic controllers possible. In addition, con-
trol algorithms can be replaced without effort, which provides an easy
way for comparing the performance of different control algorithms. We
exemplarily discuss a selection of control algorithms that were designed
for the use with our framework. In addition, we present the prototypical
implementation of the framework and show a number of test results we
gained during the validation of the approach. The paper closes with a
conclusion and an overview on future work.

1 Motivation

System virtualisation is a technique that was first developed in the mid 1960’s. It
introduces a layer of indirection between hardware and operating system, called
virtual machine monitor (VMM). The VMM provides support for creating and
running multiple virtual machines (VMs) in parallel that share the underlying
hardware. Originally, virtualisation techniques were developed to increase the
overall system reliability by isolating individual applications from each other
[1]. As a result, a fault in one application cannot corrupt others. A flourishing
technology in the 1960’s and 1970’s, virtualisation almost disappeared in the
1980’s and 1990’s due to dropping hardware prices.

Over the past years, virtualisation has emerged again, nowadays being used
on both, servers and desktop systems [2–4]. The adoption of virtualisation in
data centers is taking place at a high pace, as it allows to reduce hardware and
maintenance costs by consolidating numerous, mostly under-utilised servers. An-
other advantage of virtualisation is the introduction of a homogeneous hardware
environment (on the VM layer) that results in a significant simplification of the
management of individual systems. In addition, virtualisation may reduce sys-
tem downtimes caused by hardware defects, as VMs can be seamlessly migrated
to different physical hosts [5, 6].



However, in general, virtualisation significantly increases the overall complex-
ity of computing systems as administrators have to deal with a potentially much
bigger number of (virtual) computer systems that still require adequate moni-
toring and management. With VMs not depending on the investment in physical
hardware, the previously rather static structure of data centers can gain more
dynamics. In addition, in a virtualised data center, the overall number of inter-
component dependencies increases and wrong decisions can potentially cause
bigger damage. At the the same time, virtualised data centers offer a huge po-
tential for optimisation, both in the reduction of physical resource allocation
(resulting in reduced costs / “green” data centers) and the possibility to offer a
great range of Quality of Service (QoS) classes for provided services.

This indicates, that in the long run, it will not be possible to efficiently handle
the management of virtualised data centers without significant automation and
the development of self-management approaches [7] that are capable of handling
standard management tasks without human interaction. Currently, VMM inter-
faces for monitoring and reconfiguration of VMs that allow dynamic allocation
of resources (memory, CPU shares and others) at run-time, and often even live
migration of VMs, provide ideal preconditions for management automation and
the introduction of intelligent self-management controllers for QoS enforcement.

This paper presents a modular framework for autonomic QoS management
of VM-based application services. The framework separates the management
APIs provided by individual VMM technologies from the high-level controllers
used for autonomic management, which makes the design of VMM-independent
controllers possible.

Traditionally, Service Level Management (SLM) is the discipline concerned
with the monitoring and management of processes and applications according to
agreed-upon QoS criteria [8–10]. In service provisioning relationships, provider
and customer agree on QoS criteria and failure penalties in formal contracts,
called Service Level Agreements (SLAs). SLAs contain SLA Parameters that
define QoS aspects to consider and Service Level Objectives (SLOs) to be met
regarding these parameters.

The paper is structured as follows: Section 2 describes current approaches to
the automation of management in VM environments and briefly shows the limi-
tations of these approaches. In section 3 we discuss our modular self-management
architecture for VMs, while section 4 shows a number of control algorithms that
rely on our management architecture. Section 5 presents the prototypical imple-
mentation of this approach in combination with measurements and first practical
experiences. Section 6 concludes the paper and gives an overview on future work.

2 Related work

A number of approaches exist that aim at automating the management of virtual
environments. In [11], the authors present VIOLIN, a policy-based system, which
uses the Xen hypervisor for virtualisation. The system consists of one monitor
daemon per physical machine and a central adaptation manager. The adaptation



manager uses the data gathered by the monitor daemons to request changes in
VM resource allocation.

In [12] Grit et al. present a second policy-based management approach. The
authors use Shirako, a Java-based toolkit for dynamic ressource sharing, to ex-
plore algorithmic challenges with regard to policy usage for adaptive VM hosting.
Zhang et al. [13] describe a control-theoretical model for VM adaptation, based
on the idea that each VM is responsible for adjusting its demand for resources,
with respect to efficiency and fairness.

In [14], the authors use a feedback-control strategy to address dynamic re-
source allocation problems. They employ an infrastructure based on Xen, RUBiS
[15] and TPC-W [16]. Here, time series analysis is used to forecast the behaviour
of a virtualisation-based system. In [17] Bobroff et al. present a mechanism for
dynamic migration of VMs based on a load forecast. Menascè et al. use utility
functions for dynamic CPU allocation to virtual machines [18]. The authors test
their approach by means of simulations that are based on historical data.

Currently, no commercial solutions exist that are capable of managing VM-
based environments in a fully autonomic way. Mainly, existing commercial so-
lutions aim at supporting the work of system administrators, e.g. by providing
user-friendly management interfaces.

The previously presented approaches represent first steps taken by the re-
search community to develop strategies for highly specialised, intelligent con-
trollers. It is however hard to objectively evaluate and compare the presented
strategies as the authors use different architectures, perform incommensurable
tests and some even rely on simulations with historical data to test the perfor-
mance of their strategies.

We argue that a common, modular framework for the development and eval-
uation of self-management strategies for virtualisation-based environments is a
prerequisite to be able evaluate and compare the efficiency of different controller
design approaches. One advantage of using a modular architecture is that con-
trol approaches like the ones in [11, 12, 14, 17, 18] can be easily adapted and
integrated into the framework. This way, certain aspects of the approaches pre-
sented above can be reused. In the following section our approach for such a
modular management framework is presented.

3 The Management Framework

3.1 Requirements

A framework for developing and evaluating self-management strategies for virtuali-
sation-based distributed environments must fulfil the following requirements:

(1) Separation of control algorithms from the management framework
(2) Support for different virtualisation technologies
(3) Support for a common evaluation mechanism



(1) basically assures that the management framework is responsible for deal-
ing with aspects like monitoring and execution of tasks, while a separate intel-
ligent controller defines management tasks based on gathered monitoring data.
As such, a framework should support different types of intelligent controllers by
providing a generic controller interface.

(2) requires the framework to support different virtualisation technologies
(e.g. VMware ESX or Xen), transparently for the controller. Thus, from a con-
troller’s perspective, the framework is acting as an abstraction layer on top of
the virtualisation technology.

(3) means that the framework has to support a consistent mechanism for
tracing and comparing of management decisions in order to evaluate different
self-management approaches against each other.

3.2 Overall Architecture

We have designed a management framework for VM environments that fulfils
the requirements discussed above. The framework is used to manage a cluster
of n physical machines, each hosting between 0 and m VMs. Fig. 1 depicts the
overall architecture of the framework. It comprises three types of management
components: a VM Manager is responsible for a VM, one Physical Manager is
assigned to each physical machine and a Cluster Manager takes care of the entire
cluster. These management components are described in detail in the following
paragraphs.

Fig. 1. Overall architecture of the management framework



The VM Manager component monitors and controls both, the OS and the
applications of a VM. It monitors OS parameters like CPU utilisation and
used/available memory trough its VM Monitor module. In addition, a SL Mon-
itor module monitors specific quality of service parameters regarding the service
hosted by the VM. We assume that each VM hosts only a single service, e.g. Web
server, mail server or DBMS. We argue that this is common practise in a server
consolidation scenario. Furthermore, we define service level objectives (SLOs) for
the services provided by the VMs. The VM Logic module uses the data obtained
from the SL Monitor to detect SLO violations. In case a SLO violation occurs,
the VM Logic module uses the data gathered from the VM Monitor to determine
the resource bottleneck (e.g. CPU or memory) that causes the problem. After
the bottleneck has been identified, the VM Manager informs the responsible
Cluster Manager about the resource bottleneck through its Actuator module.

The Physical Manager component controls a physical machine, basically by
executing two different tasks: it uses a Monitor module to observe the resource
utilisation of the machine and forwards the collected data to the Cluster Man-
ager. In addition, the Physical Manager executes management actions that are
requested by the Cluster Manager through its Actuator module, e.g. resource
reallocations or migration of VMs to a different physical machine.

The Cluster Manager component comprises a Monitor module which receives
monitoring data from the Physical Managers within the cluster. It uses the
aggregated data to create a global view of resource usage and availability in
the managed cluster. This global view is used by the Cluster Logic module
to fulfil (VM Manager) requests for additional resources. Having determined
a way to reallocate resources for VMs in the cluster, the Cluster Manager uses
its Actuator component to request Physical Managers to perform the required
resource allocation changes.

3.3 Internal Architecture of a Manager Component

In compliance with the IBM reference architecture, we have developed a modu-
lar Self-Manager that provides a customisable basis for the VM Managers, the
Physical Managers and the Cluster Manager (see fig. 2 for details).

Internally, the Self-Manager consists of four main components: The central el-
ement of the Self-Manager is the management kernel, which provides adapters
to connect extension modules. Extension modules are instantiated by the central
module manager. The modules implement sensors, effectors, and the internal
logic of the self-management controller. A messaging subsystem, which is part
of the kernel, is responsible for message handling within the Self-Manager.

The Self-Manager supports three kinds of extension modules: event
modules, action modules, and control modules. Event modules create their
own threads and thus are able to react actively to changes within the environ-
ment, e.g. by creating internal messages. Action modules are passive; they act –
triggered by internal messages – by analysing application-specific sensors, or per-
forming management tasks. Sensors can be realised using either event modules
(push model) or action modules (pull model). Application-specific actuators



are realised through action modules. The modules implement application-class
specific interfaces, e.g. for accessing the control API of a VMM.

Control modules form the “brain” of the

Fig. 2. Modular Self-
Manager architecture

Self-Manager as they host the management
knowledge and implement the control algorithms.
Control modules act periodically or are trig-
gered by incoming messages. Management deci-
sions are communicated to other modules using
the internal messaging capabilities.

Internally, VM Managers and the Cluster
Manager comprise a control module and sev-
eral action and event modules, while the Phys-
ical Managers solely consist of action and event
modules. A number of controller modules are pre-
sented in the following section. The architecture
uses Java RMI-based event modules for inter-
manager communication.

The management framework can be easily adapted to different virtualisa-
tion technologies by simply replacing the technology-dependent action and event
modules in the VM Managers and the Physical Managers.

3.4 Evaluation of the Framework

It can be easily observed that this framework fulfils the previously de-
fined requirements. Various Cluster Logic components that use different self-
management strategies can be plugged into the framework. Furthermore, differ-
ent virtualisation technologies can be addressed by simply providing necessary
adaptor modules for each virtualisation technology. Last, it is possible to use
standard benchmarking tools to generate load for application services provi-
sioned in the VMs and then utilise the VM Monitor component to evaluate their
behaviour. This way, different intelligent controller approaches can be evaluated
with respect to service performance under defined loads.

For our management framework, we look at an architecture with three types
of entities/components: VMs, physical machines and the cluster itself. Since in
our management framework each of these entities is equipped with an autonomic
manager, our system is composed only of autonomic components. Compared to
other architectural approaches for self-managing systems, our architecture re-
sembles the approach proposed by White et. al in [19]. Furthermore, the au-
tonomic manager of each component continuously executes a MAPE (Monitor,
Analyse, Plan, Execute) loop. This conforms to the IBM vision [7] of how auto-
nomic computing systems should operate.

4 Autonomic Controllers for the Management Framework

To demonstrate the flexibility and adaptability of our management framework we
implemented a number of self-management control approaches for both, the VM



Logic and Cluster Logic components. All approaches presented in the following
use service response time as example SLA parameter for service monitoring. The
use of other SLA parameters (e.g. throughput) is however possible.

4.1 Autonomic Management for a VM Logic Component

The purpose of a VM Logic component is to monitor and analyse the resource
utilisation of a VM and the response times of the service hosted by the VM.
Once service response times exceed a given threshold (the SLO), the VM Logic
component uses the data representing the resource utilisation of the VM to deter-
mine the root cause of this increase. Thus, the VM Logic component performs a
bottleneck determination process, just like a human system administrator would
do. The controllers’ knowledge about the managed system is represented as a
number of rules, such as:

facts : SLO violation occurred, the OS is swapping
action : allocate additional memory

The bottleneck-determination process is implemented as a rule-based expert
system. At runtime, the rule engine uses input data like service response times
and VM resource utilisation to try to match the facts of a rule. If all facts of a rule
match, the corresponding action is performed. For the given example, the VM
Logic Component sends a request for additional memory to the Cluster Manager,
which then evaluates all incoming requests and takes appropriate actions from
its global perspective.

4.2 Autonomic Management for the Cluster Logic component

Due to the abstraction layer provided by the VM Managers and the Physical
Managers, the Cluster Manager solely deals with the problem of satisfying the
resource requests of the different VM Managers. Thus, at this abstraction level,
we see resource consumers (the VMs), and resource providers (the physical ma-
chines). We thus aim to satisfy the needs of the resource consumers using the
resources supplied by the resource providers.

Various approaches can be used to solve this resource allocation problem.
We have previously argued that an evaluation of different self-management ap-
proaches can be easily achieved using our framework. To back this statement,
we present two different heuristic-based algorithms that try to solve our resource
allocation problem.

Algorithm A first checks whether the additional resource share required by a VM
is available on the physical machine that currently provisions the VM. If this is
the case, the algorithm gives instructions to allocate the additional resource share
to the VM and terminates. If the requested resource share is not available on the
current physical machine, the algorithm looks for a different physical machine
in the cluster that provides enough spare resources for hosting the requesting



VM. This means that not only the requested resource share must be available,
but in addition all the resources currently assigned to the VM. If such a remote
physical machine is found, the VM is migrated to its new destination and the
algorithm terminates. The selected destination machine can be either online or
in an offline state. However, destinations that are currently offline cause higher
migration costs, due to the time span needed for powering up and booting. In
case no suitable destination is found, the algorithm fails to find a solution.

This algorithm uses a “first fit” strategy. The disadvantages of Algorithm A
are obvious: besides not always being capable of finding a solution, the solutions
found by the algorithm can sometimes be quite far from optimal. On the other
hand, the algorithm has a linear complexity. The solutions found the by Algo-
rithm A, although not always optimal, represent states that can be achieved by
performing a single migration from the initial state. This ensures that no costly
solution will ever be suggested by the algorithm.

Algorithm B uses a local search approach based on the K-Best-First Search
(KBFS) algorithm, first introduced by Felner et al. [20]. Our algorithm encodes
the mapping of VMs to physical machines in the cluster in form of states. In
addition, the encoding includes allocated and available resources of each physical
machine. Each state has its global profit, representing a function of the sum of
the local profits of each physical machine and the validity of the state.

The local profit of a physical machine represents a function of its resource
utilisation. Thus, the higher the resource utilisation of a machine, the higher the
local profit. An offline physical machine has the maximum local profit possible.
This assures that the global profit of a state increases when some machines are
kept at a high resource utilisation while the others are kept offline.

Global profit is calculated by multiplying the sum of the local profits with the
validity of the state, which can be either 0 or 1. Thus, the global profit can either
be the sum of the local profits if the state is valid, or 0 if the state is not valid.
A valid state is a state where the free capacity (e.g. in terms of memory, CPU)
of any physical machine is bigger or equal to the sum of requested capacities
of the VMs provisioned on that physical machine. All other states are invalid.
As a result, Algorithm B defines a valid gobal state as a state with a global
profit higher than 0. However, valid states can also be ranked, depending on
their global profit.

Besides the global profit of a state, Algorithm B also computes the total cost
of moving from the initial state to any given state. The total cost is a function
of the number of migrations necessary for the translation from the initial state
to that given state. The total cost is then used in combination with the global
profit to determine the utility of a translation between an initial state and a
given state. This is the ultimate quality factor that is used to select the final
state.

Using this encoding and criteria, Algorithm B performs its local search. For
this, two lists are used: the open list of states (nodes) that have been evaluated
with respect to their utility but not expanded, and the closed list which contains
the nodes that have already been expanded. At each iteration, the best k nodes



from the open list are expanded, their children are evaluated and added to the
open list. After a limited number of iterations, the algorithm terminates and the
node with the highest utility is selected. This represents the final state, and the
system moves to that state by means of successive migrations.

Algorithm B is always capable to find a valid solution if valid solutions exist
and the translation costs to at least one of these solutions does not exceed a
certain, predefined value. However, in finding a solution the algorithm determines
the local optimum which is not necessarily the global optimal solution.

5 Implementation and Experiences

We have successfully implemented a Java-based prototype of the management
framework. The prototype is able to autonomically manage VMs based on the
Xen hypervisor. The implementation comprises sensors and effectors to access
the Xen API [21] for VM reconfiguration and migration. VM parameters and
application response time metrics are monitored using a JMX [22] interface.

The Physical Managers use the Xen-API to manage a physical machine that
hosts an instance of the Xen 3.1 hypervisor. The Xen-API is used for monitor-
ing, dynamic resource allocation and to perform live migration. Both the VM
Manager and the Physical Manager communicate with the Cluster Manager us-
ing Java RMI. The Cluster Manager provides support for plugging-in different
Cluster Logic components through a messaging interface.

Examples for VM Logic and Cluster Logic components have been imple-
mented as presented in section 4. We used the rule engine Jess in the implemen-
tation of the VM Logic approach.

Influence of Memory Allocation on Service Response Time

0

20000000

40000000

60000000

80000000

100000000

120000000

0:0
0:0

0

0:0
0:2

0

0:0
0:4

2

0:0
1:0

2

0:0
1:2

2

0:0
1:4

2

0:0
2:0

2

0:0
2:2

2

0:0
2:4

2

0:0
3:0

2

0:0
3:2

2

Time (s)

By
te

s

0

0,5

1

1,5

2

2,5

SL
O

 V
io

la
tio

ns VM OS Free
Memory

VM OS used
Swap

Measured SLO
Violations per
Minute

Fig. 3. Influence of available memory on the number of SLO violations

We have tested the framework using a Java implementation of the TPC-
W benchmark.The TPC-W e-commerce application suite is provisioned by a



Tomcat server that runs in a Xen-based VM. The associated VM Manager en-
forces an SLO, which defines a maximum response time of 3000ms, tolerating
a maximum of three exceptions within a two minute period. As a TPC-W load
generator is started on a client system, the VM Manager observes a dramatic
increase in response times, resulting in an SLO violation. The manager deter-
mines the amount of memory assigned to the VM being the bottleneck. Thus,
the VM Manager requests additional memory from the Cluster Manager. As this
request is fulfilled, the VM Manager observes a significant decrease in response
times down to an acceptable level. This behaviour can be observed in fig. 3. The
decrease in SLO violations per minute shows that the VM Manager is able to
successfully determine the resource that caused the bottleneck.

Final Memory Allocation

VM 2

VM 1

Free

0

2

4

6

8

10

12

Host 1 Host 2

10
0 

M
B

Initial Memory Allocation

Free

Free

VM 2
VM 1

0

2

4

6

8

10

12

Host 1 Host 2

10
0 

M
B

Fig. 4. A management scenario comprising two physical machines

We evaluated the two Cluster Logic algorithms described in section 4 live
and by means of simulation. Since in the previous test the VM Manager has
determined memory to be the bottleneck resource, we concentrated on memory
allocation. In the following we describe our experiences in two scenarios.

In the first scenario, two physical machines named Host 1 and Host 2 each
provision one VM, VM 1 respectively VM 2 (see fig. 4). Host 1 possesses a total
of 500 MB RAM for VMs, while Host 2 provides 1000 MB. At the beginning, VM
1 uses 300 MB, while VM 2 uses 400 MB. As the TPC-W load generator stresses
VM 1, the VM Manager responsible for VM 1 requests additional memory (in
this case an extra 300 MB) from the Cluster Manager. In this scenario, both
Cluster Logic algorithms deliver the same solution, namely to migrate VM 1
from Host 1 to Host 2 as Host 1 is not able to provide extra 300 MB of memory.

The second scenario comprises three physical machines: Host 1, Host 2 and
Host 3 (see fig. 5, left chart). At the beginning, each of them provisions one VM:
VM 1, VM 2 and VM 3 respectively. In this scenario, Host 1 possesses a total of
500 MB RAM for VMs, Host 2 600 MB and Host 3 1100 MB, while VM 1 uses
300 MB, VM 2 400 MB and VM 3 600 MB. Again, the VM Manager responsible
for VM 1 requests 300 MB of additional memory. Unlike in the first scenario, the
two algorithms perform differently. In fact, Algorithm A is not even capable of
finding a valid solution as neither Host 2 nor Host 3 have 600 MB of free memory



Initial Memory Allocation

Free

Free

Free

VM 3

VM 2
VM 1

0

2

4

6

8

10

12

Host 1 Host 2 Host 3

10
0 

M
B

Intermediate Memory Allocation

Free

Free

Free

VM 3

VM 2

VM 1

0

2

4

6

8

10

12

Host 1 Host 2 Host 3

Final Memory Allocation

VM 3

VM 2

VM 1

Free

Free

0

2

4

6

8

10

12

Host 1 Host 2 Host 3

Fig. 5. A management scenario comprising three physical machines

available. This scenario clearly shown the limitations of this simple algorithm.
The more sophisticated Algorithm B is able to find an optimal solution: VM 2
is migrated to Host 3 before VM 1 is migrated to Host 2. As a side effect, this
solution results in a high resource utilisation on both, Host 2 and Host 3, while
Host 1 provisions no VM and thus can be set offline. The evolution of Algorithm
B from the initial state to this final state can be observed in fig. 5.

6 Conclusions and Future Work

We designed a modular framework for autonomic QoS management of VM-based
application services. The framework separates the management APIs provided by
individual VMM technologies from the high-level controllers used for autonomic
management, which makes the design of VMM-independent controllers possible.
In addition, control algorithms can be easily replaced, which provides an easy
way for comparing the performance of different control algorithms.

The framework has been prototypically implemented and has been success-
fully evaluated using different approaches for autonomic control algorithms. Ex-
periences gained from initial tests and simulations prove the feasibility of our
approach. Results also show that our self-management framework can be used to
successfully test and evaluate different self-management control approaches that
can be implemented independent from the underlying virtualisation technology.
This also provides the basis for further optimisation of controllers to support ad-
ditional strategies, e.g. to try to accumulate existing VMs only on a subset of the
physical machines available in the cluster in order to support “green datacenter”
strategies by minimising the number of hosts to be kept online.

Future work will concentrate on two main tasks: further research in appro-
priate control algorithms is needed as we determined that in general our Cluster
Logic components are faced with a multi-dimensional multiple knapsack prob-
lem, which is NP-hard. We will work on the definition of constraints that will
allow us to simplify this problem and will hopefully lead to control approaches
that at least grant a good (if not optimal) solution. In addition we will work on
the integration of the management approach for VMs with an existing architec-
ture for decentralised SLM of SOA workflows and services, which is currently
developed in our lab.



References

1. Rosenblum, M., Garfinkel, T.: Virtual machine monitors: current technology and
future trends. Computer 38(5) (2005) 39–47

2. VMware ESX. http://www.vmware.com/products/vi/esx/ (l. visited 12/2007).
3. Xen Source. http://www.xensource.com/ (l. visited 12/2007).
4. Virtual Box. http://www.virtualbox.org/ (l. visited 12/2007).
5. Bressoud, T.C., Schneider, F.B.: Hypervisor-based fault tolerance. In: SOSP ’95:

Proceedings of the 15th ACM symposium on Operating systems principles. (1995)
6. Cox, A.L., Mohanram, K., Rixner, S.: Dependable unaffordable. In: ASID ’06:

Proceedings of the 1st workshop on Architectural and system support for improving
software dependability, New York, NY, USA, ACM Press (2006) 58–62

7. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36
(2003) 41–50

8. Sturm, R., Morris, W., Jander, M.: Foundations of Service Level Management.
SAMS Publishing (April 2000)

9. Lewis, L.: Service Level Management for Enterprise Networks. Artech House
Publishers (1999)

10. Verma, D.: Supporting Service Level Agreements on IP Networks. Macmillan
Technical Publishing (1999)

11. Ruth, P., Rhee, J., Xu, D., Kennell, R., Goasguen, S.: Autonomic live adaptation
of virtual computational environments in a multi-domain infrastructure. In: IEEE
International Conference on Autonomic Computing. (2006)

12. Grit, L., Irwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for net-
worked clusters: Building the foundations for autonomic orchestration. In: Pro-
ceedings of the 2nd International Workshop on Virtualization Technology in Dis-
tributed Computing, IEEE (2006)

13. Zhang, Y., Bestavros, A., Guirguis, M., Matta, I., West, R.: Friendly virtual ma-
chines: leveraging a feedback-control model for application adaptation. In: VEE
’05: Proceedings of the 1st ACM/USENIX international conference on Virtual ex-
ecution environments. (2005)

14. Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.,
Salem, K.: Adaptive control of virtualized resources in utility computing environ-
ments. In: EuroSys ’07: Proceedings of the 2007 conference on EuroSys. (2007)

15. RUBiS. http://rubis.objectweb.org/ (l. visited 12/2007).
16. TPC-W. http://www.tpc.org/tpcw/ (l. visited 12/2007).
17. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for

managing sla violations. In: Integrated Network Management, 2007. IM ’07. 10th
IFIP/IEEE International Symposium on. (2007) 119–128

18. Menasce, D.A., Bennani, M.N.: Autonomic virtualized environments. In: ICAS
’06: Proceedings of the International Conference on Autonomic and Autonomous
Systems, Washington, DC, USA, IEEE Computer Society (2006) 28

19. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architec-
tural approach to autonomic computing. In: Autonomic Computing, 2004. Pro-
ceedings. International Conference on. (2004) 2–9

20. Felner, A., Kraus, S., Korf, R.E.: Kbfs: K-best-first search. Annals of Mathematics
and Artificial Intelligence 39(1) (2003) 19–39

21. The Xen API. http://wiki.xensource.com/xenwiki/XenApi (l. visited 12/2007).
22. Java Management Extensions. http://java.sun.com/javase/technologies/

core/mntr-mgmt/javamanagement/ (l. visited 12/2007).


