
Self-Integration of Web Services in BPEL Processes

Steffen Bleul, Diana Comes, Marc Kirchhoff, and Michael Zapf

Kassel University, Distributed Systems, {bleul,comes,kirchhoff,zapf}@vs.uni-kassel.de

Abstract. Interoperability between clients and service may not be seen as a
major challenge in SOAs but in reality services under change impose a ma-
jor hindrance in service management. We present a model and system for ser-
vice process management where we achieve self-integration by automatic mes-
sage matching and runtime transformation. We have developed the necessary
WSDL schema extension, a semantic discovery algorithm, and a runtime me-
diation system. Our matching algorithm can detect semantically related message
elements and generate appropriate XSL transformations. Finally our system dy-
namically instantiates mediators to bind services to service processes specified
with BPEL4WS.

1 Introduction

Self-integration is an important issue for self-properties inside SOAs. The flexibility of
a SOA depends on the ability to add, remove, or update a service without interrupting
the course of business. The update of a service and especially the introduction of new
services inside the SOA of an enterprise or external services of business partners entail
a change in service interfaces.

Service interfaces consist of operations and parameters. It is mandatory that these
properties directly correspond to the respective properties of the client’s stub; otherwise
communication will fail.

By self-integration we refer to the automatic process of integrating Web Services
into a SOA by mediation between differing interfaces. This is achieved using a stylesheet
transformation (XSLT) [9] which is automatically generated. At first, the semantic cover
of two SOAP [7] messages is evaluated. If the messages share semantically equivalent
message elements, then the matching algorithm creates an appropriate transformation.
Moreover, we introduce a lifecycle for BPEL4WS [2] processes where the necessary
services are discovered and integrated using mediators. An integration manager ensures
undisturbed functionality of the registered service processes by automatic enforcement
of our lifecycle.

The paper is structured as follows. In Section 2 we introduce our model of self-
integration in BPEL processes and a service process lifecycle with an integration man-
ager. The self-integration process is described in Section 3 along with the semantic
annotation of WSDL [8] and our matching algorithm. Section 4 presents related work,
and the paper closes with a conclusion in Section 5.



2 Self-Integration for BPEL Processes

The task of self-integration consists of the automatic binding of applications, which re-
quire some service functionality, to a dynamic changing set of services, and furthermore
of the automatic deployment of service mediators when necessary. In our approach we
not only support process deployment and binding, but also automatic generation of
message transformations for incompatible service interfaces. The additional cost is to
prepare once a semantic annotation of the message elements inside the WSDL descrip-
tion of a service with OWL [15] individuals (WSDL + OWL). The semantic service
discovery algorithm enables not only semantic matchmaking [17,5,6] but also produces
XSL transformations (XSLT) for our message mediation system. Our system employs
runtime transformation of messages with XSL transformations, as well as conversion
of values, e.g. data type and currency conversions, with additional software plug-ins.
The service discovery algorithm in combination with the system allow a high grade of
autonomy in relation to service integration without the need of manual administration.

Figure 1 presents some details of our model, focusing on service integration. In
our model, services are available when their interfaces description, formulated e.g. in
WSDL, are registered inside the Service Registry. They are unavailable as soon as their
interface descriptions are removed. Descriptions are also removed when the Monitoring
System detects and throws faults. On the other side, we ensure that BPEL instances
are running for all BPEL descriptions inside our Process Registry. The central part of
our integration system is the Integration Manager. The manager is responsible for the
failsafe execution of an arbitrary amount of BPEL descriptions by integrating registered
services. In principle, the system can handle an arbitrary amount of process registries
and service registries, but we limit our model by providing access to only one BPEL4WS
engine and Mediation System.
The manager task processes the following steps:

1. Service discovery: The WSDL files of the BPEL description represent service
queries and are matched against the service offers. A matching score is calculated
and the services are ranked by their matching score.

2. Service integration: The discovery algorithm generates XSLT documents for suc-
cessful matches. Furthermore, the algorithm produces a list of mediator plug-ins
which are necessary to convert values. Both the list and the XSLT documents are
used for runtime configuration of the Message Mediation system and enables ad-
hoc service integration.

3. Deployment process: The process will be deployed on the BPEL4WS engine and
their endpoint references are adjusted. They invoke endpoints of Mediators instead
of direct invocation of the participating Web Services.

4. Monitoring: The system removes service descriptions automatically when the mon-
itors discover unreachable services. Afterwards the manager starts anew by discov-
ering services.

Our scenario is a BPEL4WS process of a book shop which requires three partici-
pating services. The process requests a storehouse service for checking available books
of a customer’s shopping cart, then an accounting service for the creation of receipts.



Storehouse

Web Services

Accounting

Book-Wholesaler

Service
Discovery

Service RegistryProcess Registry

BPEL4WS

Integration
Manager

Deploy
Process

Monitoring

Service Integration

Message Mediation &
Monitoring System

Runtime Monitor

Mediator

XSLT
PlugIn

PlugIn

BPEL4WS-Engine

Process-Instance

Book-Shop-Instance

WSDL
+

OWL
WSDL

+
OWL
WSDL

+
OWL

WSDL
+

OWL
WSDL

+
OWL
WSDL

+
OWL

Book-Wholesaler
Book-Wholesaler

Fig. 1. Self-Integration for BPEL Processes

Additionally we involve a book wholesaler to emulate the need for dynamic changing
business partners from a set of book wholesalers. Every service differs in its interfaces
from the interface description of the specified business process. Thus, service integra-
tion is only possible via message mediation.

3 Automatic Message Transformation for Web Services

The process of automatic message transformation consists of creating transformation
instructions and deploying mediators between clients and Web Services. Mediators are
responsible for transforming the Web Service request, response, and fault messages. In
our approach we achieve a high degree of mediation capabilities just by using match-
ing semantically annotated WSDL descriptions. The WSDL descriptions of a BPEL
description are used as Web Service queries and matched against all Web Service de-
scriptions from the service registry.

Mixing both semantic and syntactic enrichments of a WSDL document is signifi-
cant for our approach which includes an extension of syntactic and semantic informa-
tion. Furthermore we match aspects like whole XSD element definitions along with
data structures, lists of elements, and enumerations with information on how to use the
operations interface. A particular strength of the approach is a new degree of matching
possibilities which can be achieved with semantics in the case of Web Services:
Interface characteristics: A service interface may have an arbitrary amount of op-
erations. Several operations can have the same functionality. Semantically annotated
operations identify related functionality. The operations functionality must be invoked



WSDL-Definition

Operation

input output

Part Part

Element Element

Semantic Extension

Semantic Extension

Operation
Annotation

Message Extension

Element
Annotation

Element
Annotation

Book-Info

ISBN

Title

Author

Year

Shipment

Price

Cost

Legend:
Reference

Fig. 2. Structure of an extended WSDL Document.

with a group of parameters. For example, a book search operation can be invoked with
both a unique ISBN number or with the tuple title, year, and author. Parameters may be
optional or required. Additional syntactic informations give information about service
usage and enhance interoperability.
Structural transformation: Seemingly little differences like different parameter names
may already prevent interoperability between client and service. The structural trans-
formation deals with the issues of renaming parameters, transforming different struc-
tures of complex parameters with sub elements, arrays of parameters and enumerations.
Structural differences can be solved by using XSL transformation.
Content transformation: Message values consists of a type, a unit, and a data type. In
some cases we need unit conversions, like different currencies or measurements, or data
type conversions as required for different date formats. XSLT cannot be used for content
transformation of message values. This issue is tackled by a flexible plug-in mechanism
for converting components which is automatically integrated and considered by the
matching algorithm.

3.1 Semantic Extension of WSDL

As described above we need to define an extension of the WDSL schema in order to
achieve the desired transformation features. The extension integrates as a new section
in the WSDL with its own document root. Thus, we can add information on WSDL el-
ements without invalidating the WSDL documents. Apart from the automatic message
transformation, this information may serve as an additional documentation of Web Ser-
vice interfaces, with low bounds of initial training of administrators and support tools
for interface mediation. An overview is presented in Figure 2.

In the center we give an overview of a structure of a WSDL definition. On the left
side we present the structure of our extension section. A Web Service is described by
a set of operations, for each of which we define a semantic extension. Furthermore,
we define a message extension for each input, output, and fault message. A message



Client’s Required
Response Message

Element

BookPrice

Service’s
Response Message

Extension

data type

unit

type

Extension

data type

unit

type

Domain Ontologies

Bookdescription

Title

Title

Author

Name

Currency

Euro Yen

xsd:anyType

xsd:double

Legend:
Reference
Subclass Relationship

Element

Price

xsd:float

Fig. 3. Annotation of an Element with a Tripplet of Concepts.

is divided into parts which are defined by XSD elements. The expressiveness of XSD
allows to specify message elements with a simple value or a complex element with a
subelements. Arrays and enumerations are also part of a schema definition.

Each element may be semantically annotated. In addition to considering input and
output parts, we can do reasoning over the whole message structure like the illustrated
example on the right side in Figure 2. The example is an informal representation of the
response message of a book wholesaler search service. The message has the following
structure:

1. On the upper level the response message is an array of elements. The array repre-
sents a list of Book-Infos.

2. The next lower level is a structure of elements with simple values, e.g. ISBN, title,
author, and year. This structure represents the data of a single Book-Info.

3. On the lowest level each book has a substructure called Shipment. This substructure
embeds information about the price of the book and shipping costs.

The structure of the message can be deduced from syntactic information but we
need additional semantics to express the meaning of an element.

In our extension, elements are represented by a tuple of concepts representing the
type, data type, and a unit. Figure 3 shows an example: On the left side we have
an excerpt of the client’s response message definition. The client expects an element
BookPrice whereas the interface of the server returns an element named Price. We ref-
erence both elements in our extension and annotate them with concepts.

In order to annotate the elements we use three domain ontologies. The upper ontol-
ogy represents concepts from the BookDescription area. The concept Title is referenced



by the type element of our extension. Both definitions reference this concept, and de-
spite of different identifiers we have a semantic equivalence between both elements.

The next ontology defines concepts of the Currency domain. It is used to express
the unit of the pricing. While the client’s pricing is based on the currency Euro, the
service returns the price in Yen. Here we have a semantic mismatch which requires
matchmaking (see Section 3.2).

The last step is the annotation of the data type of the element; here we use the XSD
type hierarchies which can be directly transformed into a data type ontology. In this
example the client’s pricing is expressed by a double whereas the server returns the
price as a float. The semantic cover of the two messages can now be evaluated by our
matching algorithm.

3.2 Semantic Service Discovery

Semantic Service Discovery is an algorithm which looks up a service offering the de-
sired functionality. In principle we apply input/output matching of service operations,
described in [6]. With respect to this approach, to be more detailed, we are not only
looking for a required functionality but we are interested whether the client can in-
voke the service. This is an issue of interoperability between the client and service.
As already mentioned, we have a mediation system which can transform SOAP mes-
sages and convert content by means of plug-ins. This must be already considered in the
matching process. We cannot fully elaborate on the algorithm in this article, so we give
an informal explanation and examples of the key elements of the matching process.

A client invokes an operation of a service by sending a request message in the
expected format of the service.

We match the WDSL description of the service as expected by the client against
the actual WSDL description of the service and decide if the interfaces are compatible
or the discrepancies can be bridged at runtime by our mediation system. The matching
process works top-down in the WSDL definition.

First we match operations against each other, comparing input, output, and fault
messages. Secondly we check the semantic cover of the messages. An example can be
found in Figure 4. On the left side is the expected response message of the client, and
on the right side we have the actual response message of the service. We have to match
a required message structure against the returned message structure of the following
types:
Arrays: An array is a fixed list of subelements. These subelements can again be ar-
rays, complex-types, and enumerations. In order to be compatible the offered message
structure must at least deliver one element of the required substructure. In this case they
share a semantic cover.

Example: In our example the top-level element is an array of book information. The
information itself is represented by a complex type. The required message also has an
array as top-level element. Note that even in this case the interoperability may fail due
to different identifiers for the array elements.
Complex Types: A complex type is an element that has a fixed defined set of subele-
ments. Complex types can again contain complex types as subelements. The offered
message structure must provide all the subelements defined in the complex type in the



Book

ISBN

Author

Year

Price (€)

Shipping (€)

Book-Info

Title

ISBN

Author

Year

Title

Shipment

Price (¥)

Cost (¥)

Array

Successful Match

Matchmaking

Legend

Plug-in Plug-in

($) <= (¥)(€) <= ($)

Fig. 4. Semantic Matchmaking Result.

required message structure. This also holds for every subelement which is also a com-
plex type.

Example: The required message structure is a fixed set of simple types. The of-
fered message structure consists of simple types but additionally the shipping data is
embedded into another complex type Shipment.
Enumerations: An enumeration is a fixed set of simple types. In the concrete message
the field for this element may contain a member of this set. The offered message struc-
ture must not have more enumerated elements than the requested message structure. All
elements of the offered message structure must be semantically related to all elements
of the requested message structure.

Example: The genre of the book may be represented by an enumeration. While
the requested enumeration may contain the genres romance, fantasy, and research, the
offered must not contain more or any other apart from these three genres.
Simple Types: A simple type is an element with a value. The value is described by
its semantic type, unit, and data type. The annotated concepts are matched by subclass
relationships. The offered simple type must contain a related semantic type with the
appropriate unit and a compatible data type.

Example: Here we refer to the example in Figure 3. The requested simple type is on
the left side and requires as its value a Price in the unit Euro expressed by the data type
double. The offered simple type offers the semantic equivalent type but in the unit Yen
and is expressed by the data type float.

On the lowest level we have the matching of simple types, achieved by matching
the semantic concepts for their type, unit, and data type. For specialization relations
between A and B, this requires the matching process to consult the domain ontology
for the predicate subsumes(A,B) for the concepts A and B: subsumes evaluates to true



when A is an equivalent or a subsumption of concept B. In this case, the type annotated
with concept B is an equivalent or a specialization of the parameter with concept A. In
other words, concept B represents a type that matches the type annotated with concept
A or an inheritance of the parameter annotated with concept A. The same applies for
the unit and data type of a simple type.

After matching all simple types of the two message structures we get the following
result shown in Figure 4. Successful matches are represented by arrows. Both message
structures have arrays as their top-level elements. The arrayed book information share
a semantic cover because the offered message structure nearly offers all the elements of
the required message. It does not offer the necessary elements Price and Cost, though.
Here the recursive algorithm discovers the necessary elements on the next lower com-
plex type Shipment. Finally we have discovered the necessary elements but now we
discover a mismatch of units for the value of Price, Shipping, and Cost.

At this point matchmaking comes into play. Matchmaking is the process of bridging
discrepancies discovered by our matching algorithm in order to have a successful match.
Specifically, we apply semantic service discovery itself to dynamically learn about the
conversion capabilities of our mediation system. If units and data types do not match,
we need content conversion. This conversion is done by plug-ins at runtime.

Here again, we use concepts for specifying the parameters. The algorithm is capable
of dynamically discovering plug-ins that can be triggered with the value of the offered
message and converted to value of the required message. Moreover, we can discover
a sequence of plug-ins as a stepwise conversion from one format into another. In our
example in Figure 4, we find two currency conversion plug-ins. The first one converts
from yen to dollar and the next one converts from dollar to euro.

The result of the semantic discovery algorithm is generated as a transformation
instruction.

3.3 Automatic Transformation Generation

First, our system generates XSLT descriptions; second, it produces a list of sequences
of plug-ins. While plug-ins are responsible for content conversion, the XSLT is used to
manipulate the XML document inside a SOAP body. Plug-ins are an optional feature;
the system may also generate XSL transformations only but will issue a warning about
missing plug-ins. This can be used for a semi-automatic support of transformation be-
tween Web Services even without our mediation system and improve reusability of our
results.

We will now give an overview of the key features of our XSL transformations:
Rename: The simplest key feature is the renaming of identifiers. Messages can have
different identifiers for invoked operations, arrays, complex types, enumerations, and
simple types. Renaming is also used in case of different namespaces.
Remove: If the offered message structure has more elements or subelements than the
required message, this information is removed by elimination of the document nodes.
Copy: Successfully matched elements without differences are simply copied. If the re-
quired element is an array but the offered message only offers a structure, this structure
is copied as an array. Also, if the required message only requires a complex type but is
offered an array, we copy the first element. This is done by matching array bounds.



Cut and Paste: As in our example the shipping information is embedded into a sub-
complex type Shipment. In this case we cut the element out of the substructures and
paste it into the necessary element structure of the required message structure.

4 Related Work

Several projects already deal with semantics for services or even Semantic Web Ser-
vices. The most prominent ones are OWL-S [13] and WSMO [16]. Semantic exten-
sions for WSDL are available, e.g. WSDL-S [12] and SAWSDL [11]. Our approach
is distinct from these concepts in several ways: In the first place our approach is fully
automatic from registration to runtime mediation, utilitzing the WSDL annotation. Sec-
ond, this approach addresses service processes specified in BPEL4WS. Finally, we have
implemented a distributed management system featuring self-integration.

OWL-S is an OWL domain ontology for Web Services. It describes the structure,
composition, and protocol of a Web Service. The messages are described by a refer-
ence on several elements inside the WSDL definition. The OWL-S ontology does not
define a domain ontology for parameters and does not extend beyond the definition of
WSDL parts. The ontology lacks the definition of fault messages, and it does not de-
fine a matching algorithm. Even existing matching algorithms [10,6,3,4] do not match
whole data structures, let alone handle automatic generation of XSL transformations.

Service mediation is a key element in the WSMO semantic web services frame-
work. It not only defines message mediation but also mediation between ontologies. If
the mapping of parameters is manually specified, the system generates code for runtime
mediation. Unlike our system, WSMO lacks a fully automatic mediation. It supports
logic components for content transformation but does not apply semantic service dis-
covery using a stepwise transformation of data types and units. Overall, the WSMO
framework can mediate without manual administration but requires fixed transforma-
tion instructions, e.g. in XSLT.

WSDL-S and SAWSDL both define a schema extension of WSDL for semantic
annotation. Whereas WSDL-S is directly related to OWL-S and therefore OWL on-
tologies, SAWSDL is a more general approach [14]. In WSDL-S additional attributes
references concepts in an OWL-S document but in SAWSDL there is the process of
uplifting and downlifting. Uplifting is the process of transforming the message’s into
an ontology or other semantic representation. The reasoner works and transforms on
the ontology level which is then transformed back to the required message format.

SAWSDL profits from semantic reasoning on ontologies but does not define a gen-
eral matching algorithm. Furthermore, uplifting or downlifting for ontologies is done
by manually specified transformation descriptions. SAWSDL is complementary to our
approach as we only consider subclass relationship in our matching algorithm, but we
also offer a general matching algorithm, support transformation generation, and runtime
mediation on technologies like WSDL, OWL and XSD definitions.



5 Conclusions

The advantage of a SOA is the flexiblity of integrating new business logic represented
by Web Services which are arranged to business processes. However, even if we have
a description language like BPEL4WS for Web Services, executing the process is de-
pendent on fixed specified Web Service interfaces. That way we forfeit the flexibility
inside a SOA as service process management, which also means time-consuming man-
ual specification adjustments in case of changing interfaces.

In this paper we introduce a model of self-integration for service processes. This
self-integration is based on pre-specified WSDL documents which allow to automate
the management process from service discovery to runtime message transformation.
The WSDL documents of service processes are used as service queries and matched
against the service’s WSDL descriptions. In case of a successful match, a service is
bound to a service process by a Web Service proxy. Even if we have syntactically dif-
ferent message formats between client and service, we are able to mediate as long as
there is an XSL transformation between the messages.

Not only may we discover service functionality as in former approaches but also
apply a sophisticated matchmaking. The algorithm matches an XSD schema definition
of a Web Service and searches for a semantic cover. A semantic cover is found when
both messages share enough equivalent elements in their message so that the client can
invoke a service and process the response message of the service. The matching result
produces XSL transformations and allows a runtime configuration of our mediation
system. Moreover, we enhance matchmaking by semantic discovery of additional plug-
ins in order to stepwise transform message values on the fly.

The approach as described in this paper has been implemented by us in the course of
the ADDO and ADDOaction projects with promising results. The system also includes
QoS negotiation and monitoring but this is out of the scope of this paper.

6 Acknowledgments

The work presented here have been funded by the German Research Foundation (DFG)
within the project ADDOaction [1].

References

1. Automatic Service Brokering in Service oriented Architectures, Project Homepage.
URL: http://www.vs.uni-kassel.de/research/ADDO/.

2. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank
Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and Sanjiva
Weerawarana. BPEL4WS, Business Process Execution Language for Web Services Version
1.1. IBM, 2003.

3. Steffen Bleul, Thomas Weise, and Kurt Geihs. Large-Scale Service Composition in Seman-
tic Service Discovery. In IEEE Joint Conference on E-Commerce Technology(CEC ’ 06)and
Enterprise Computing, E-Commerce and E-Services(EEE ’ 06), pages 427–429. IEEE Com-
puter Society, June 2006.



4. Steffen Bleul, Thomas Weise, and Kurt Geihs. Making a Fast Semantic Service Composition
System Faster. In IEEE Joint Conference on E-Commerce Technology(CEC ’ 07)and Enter-
prise Computing, E-Commerce and E-Services(EEE ’ 07), pages 517–520. IEEE Computer
Society, 2007.

5. Steffen Bleul, Michael Zapf, and Kurt Geihs. Automatic Service Process Administration
by Semantic Service Discovery. In 7th International Conference on New Technologies of
Distributed Systems, Marrakech, Maroc, June 2007.

6. Steffen Bleul, Michael Zapf, and Kurt Geihs. Flexible Automatic Service Brokering for
SOAs. In Proceedings on 10 th IFIP / IEEE Symposium on Integrated Management (IM
2007), Munich, Germany, May 2007.

7. Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Hen-
rik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple Object Access Protocol (SOAP)
1.1. W3C Note NOTE-SOAP-20000508, World Wide Web Consortium, May 2000.

8. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Ser-
vices Description Language (WSDL) 1.1. W3c note, World Wide Web Consortium, March
2001.

9. James Clark. XSL Transformations (XSLT). W3c:rec, W3C, November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

10. Michael C. Jaeger, Gregor Rojec-Goldmann, Christoph Liebetruth, Gero Mühl, and Kurt
Geihs. Ranked Matching for Service Descriptions using OWL-S. In Kommunikation in
verteilten Systemen (KiVS 2005), Informatik Aktuell, pages 91–102, Kaiserslautern, Ger-
many, February 2005. Springer Press.

11. Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL: Semantic An-
notations for WSDL and XML Schema. IEEE Internet Computing, 11(6):60–67, 2007.

12. Ke Li, Kunal Verma, Ranjit Mulye, Reiman Rabbani, John A. Miller, and Amit P. Sheth.
Designing Semantic Web Processes: The WSDL-S Approach. In Jorge Cardoso and Amit P.
Sheth, editors, Semantic Web Services, Processes and Applications, volume 3 of Semantic
Web And Beyond Computing for Human Experience, pages 161–193. Springer, 2006.

13. David Martin, Mark Burstein, and Grit Denker et al. OWL-S, OWL-based Web Service On-
tology, 2004.
URL: http://www.daml.org/services/owl-s/1.1/.

14. David Martin, Massimo Paolucci, and Matthias Wagner. Bringing Semantic Annotations
to Web Services: OWL-S from the SAWSDL Perspective. In Karl Aberer, Key-Sun Choi,
Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon J B Nixon, Jennifer Golbeck, Peter
Mika, Diana Maynard, Guus Schreiber, and Philippe Cudré-Mauroux, editors, Proceedings
of the 6th International Semantic Web Conference and 2nd Asian Semantic Web Conference
(ISWC/ASWC2007), Busan, South Korea, volume 4825 of LNCS, pages 337–350, Berlin,
Heidelberg, November 2007. Springer Verlag.

15. Deborah L. Mcguinness and Frank van Harmelen. OWL Web Ontology Language Overview.
W3c note, World Wide Web Consortium, February 2004.

16. Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael Stollberg,
Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. Wsmo - web service
modeling ontology. In DERI Working Draft 14, volume 1, pages 77–106, BG Amsterdam,
2005. Digital Enterprise Research Institute (DERI), IOS Press.

17. Thomas Weise, Steffen Bleul, and Kurt Geihs. Web Service Composition Systems for the
Web Service Challenge - A Detailed Review. Technical Report 34-2007111919638, Novem-
ber 2007. Permanent Identifier: urn:nbn:de:hebis:34-2007111919638.


