

Workshop: Virtualized IT infrastructures and their management

23./24. October 2008 Garching/München

Broadening the Battle-zone Some thoughts on the extension of grid/cluster computing into the desktop and pool PC domain

> Michael Janczyk Dirk von Suchodoletz Chair of Communication Systems Prof. Gerhard Schneider

Computer Center of the University of Freiburg

Broadening the Battle-zone

- Structure of this presentation
 - Short overview on the chair for communication systems and the affiliation with the computer center
 - Foundation for new ideas and approaches
 - I. Motivation of this presentation
 - II.Current status
 - **III.Experiments Matrix**
 - IV.Virtualization for clusters
 - V.Preliminary results
 - **VI.Conclusion**
 - Discussion

Chair of Communication Systems

- Prof. Gerhard Schneider is head of Computer Center too, thus the connection
- Focus on practical issues of computer operation
- Research in the fields of long-term preservation, location based services/location awareness, identity and site management, ...
- Research group: Dirk von Suchodoletz, Michael Janczyk

Service Unit Computer Center

- Computer center manages IT infrastructure
 - Runs a number of Grid/Cluster systems
 - Offers different types of computer pools
 - Supervises some more pools in different faculties
 - Administrates the network infrastructure, hands out IPs for the LAN, DNS, DHCP
- Thus interested in
 - Solutions in effective resource utilization
 - Discussion of new approaches for consulting, resource planning and purchasing

I. Motivation

- Large amount of PC available
 - Pools:
 - CPU most of the time idle using electricity
 - Or switched off
 - Both states undesired
- Need of computational power and time
- Separate infrastructure
- Merging resources

Pools

Grid

Motivation II

- Lifetime of a PC about 2-4 yrs. (Warranty 3 yrs.)
- Computing power rises
- Energy consumption remains quite stable
- Regular replacements
- Green-IT:
 - No wasting of resources
 - Less hardware / duplicates
 - Better energy to performance ratio

II. State of Present Computer Technology

- Desktop- and pool PCs offer reasonable compute power and based on the identical architecture like today's cluster/grid nodes
- Powerful ethernets with up to 1GBit/s to the personal desktop

Stateless Computer Operation

- Disk-based installations increase the maintenance efforts
- Dramatic decreased administration because of centralization
 - attendence of central servers instead of decentral nodes
 - new clients are simple to add
 - easy replacement of failing machines
 - rather different operating systems and/or operations could be run on just same machine

III. Experiments Matrix

- Different terms must be satisfied:
 - Major requirement: Desktop user shouldn't notice any performance degradation
 - Desktop / cluster user shouldn't interfere with other environment
 - Environments must be separated strictly (no reading/writing of data, ...)
 - Easy deployment (small administrative overhead)

III. Virtualization

- For separation of desktop/cluster computing environment
- Easy to separate environments
- Secure
 - Overhead of virtualization techniques is to be estimated
 - What is necessary to prior desktop processes (no mouse lags, programs start in acceptable time...)

Linux and Virtualization Options

- Linux as Open Source OS
- Platform for most grids / clusters
- Degree of para- / virtualization
- Full virtualization:
 - binary translation: VMware Server
 - hardware-assisted virtualization: KVM
- Paravirtualization: Xen
- Operating system-level virtualization: Linux VServer

Full Virtualization I

- Binary translation
 - instructions are analyzed / translated on the fly
- VMware Server
 - chosen because of the maturity of product
 - Experience gained at computer center
- Easy to
 - Install,
 - Configure,
 - Test on stateless clients
- For first test, does not allow cluster

Full Virtualization II

- Hardware-assisted virtualization
 - uses virtualization extension of the CPU
- Kernel-based Virtual Machine (KVM) chosen
- Integrated in linux kernel since 2.6.20
- Only kernel mode part
- User mode: Modified QEMU
- Qemu easy to use
 - configuration of the VM through command line

- Patch of kernel necessary
- Xen hypervisor loads in ring 0
 - Host kernel runs on ring 1
- Xen best known for paravirtualization
- Most complex solution

- Patch of kernel necessary
- Technique also called jails
 - For each system one container
 - Only user space part
- One kernel for all systems, less overhead
- Linux-VServer well known and for free

- Java Linpack benchmark
- Test on host and guest (VM)
- No user interaction

Preliminary Results I

Java Linpack Benchmarks - HP AMD Athlon(tm) 64 X2 Dual Core Processor 4800+ (2.5GHz / 512KB)

Preliminary Results II

- Java Linpack benchmark
- User interaction simulated by glxgears and find
 - Glxgears simulates graphical interaction
 - Find loop simulates I/O interaction
- Glxgears results of KVM not comparable to the others since other OS and X.Org version was used

VM: Java Linpack | Desktop: GLXGears + 'find /'

VM: Java Linpack | Desktop: GLXGears + 'find /'

- Best results with Java Linpack were delivered by Linux Vserver (as it could be expected)
- Close behind follow VMware Server and KVM
- But KVM is rather new in the arena
 - Has to be tested in an equivalent environment
 - Shows leaps of performance in synthetic setup
- Xen shows significant decrease the performance of our synthetic setup
 - Fails major requirement: Desktop user shouldn't notice any performance degradation

Conclusion - Deployment

- Requirements for running virtualization in large scale
- VMware Server, KVM and VServer easy to deploy in stateless environments, thus no adding great efforts to add cluster feature to standard desktop
 - Kernel modules
 - Tool setup scripting for automated startup
 - Guest environment operation (how to load guest systems)
- Xen more difficult to install: Client bootup
 procedures have to be greatly modified

Further Research

- Real-life tests have to be executed with real cluster computing applications
- User interaction should be tested manually as well
 - Use and feel
- In large scale cluster deployment: Cluster scheduler have to handle higher frequency of node status changes
 - Nodes might crash (be rebooted, switched off) more often than classic cluster machines
 - Fluctuant compute power so more difficult forecasting of job length
 - Scheduling suitable jobs into desktop cluster

Questions!? / Contact Information

Lehrstuhl für Kommunikationssysteme Rechenzentrum der Universität Herrmann-Herder-Str. 10 79104 Freiburg

Tel. +49 761 203 4698 / 8058 Fax +49 761 203 4640

mj0@uni-freiburg.de dsuchod@uni-freiburg.de

www.ks.uni-freiburg.de portal.uni-freiburg.de/rz

