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Spinlock Basics

Spinlocks wait actively as opposed to sleeping locks

Used for short critical sections
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Spinlock Wait Times – Kernbench
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Spinlocks and Virtualization
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Spinlocks and Virtualization
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Is lock-holder preemption problematic?
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Kernbench in a Guest
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Kernbench vs. 'while(true)'
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Time, not Times
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And in Numbers?

guest time time spent spinning
[s] [s] [%]

single kernbench 109.0 0.2 0.2%
kernbench vs while(1) 117.3 9.0 7.6%
difference 7.6%
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What can we do about it?
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Dealing with lock-holder preemption

LHP avoidance

 No spinlock held in userspace

 Idea: Avoid preempting guest in kernel space

 Postpone guest switch to kernel exit

 Problem: extraordinary long critical sections, e.g. 
Apache using sendfile()

Helping locks

 Instead of busy waiting, switch to preempted lock-
holder

 Problem: finding the preempted lock-holder
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Helping locks: Ingredients

1) Guest kernel: new 'yield' hypercall when waiting 
unusually long
● Modify spinlock loop

2) Reasonable threshold for 'unusually long'
● Histograms help

3) Selecting which VCPU to switch to
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Threshold: Upper boundary
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Threshold: Lower boundary
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Scheduling Strategy

Good choices:

 VCPUs of the same VM to make progress locally

 (Potential) preempted lock-holders

 Cache-„near“ VCPUs

Neither/nor:

 VCPUs in user space

Bad choices:

 VCPUs which yielded recently
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What about performance?
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Histogram with 'yield' hypercall
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Performance

wall clock guest time time spent spinning
[s] [s] [s] [%]

LHP 34.8 117.3 9.0 7.6%
yield 33.5 108.4 0.0 0.0%
difference -3.9% -7.6% -7.6%
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Efficiency
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Efficiency
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Efficiency
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Efficiency

   

117 sec
117 sec126 sec

×7.6% = 3.7%

➔ Real result of 3.9% is reasonable

➔ Highly efficient
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FIFO ticket spinlocks
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FIFO ticket spinlocks

Next ticket in dispenser: queue tail

„Now serving“ display at counter: queue head

Lock: atomic( ticket = tail++ ); while ( head != ticket );

Unlock: atomic( head++ );



How to Deal with Lock-Holder Preemption29

FIFO ticket spinlocks
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Ticket locks and virtualization

wall clock guest time time spent spinning
[s] [s] [s] [%]

LHP 2825.1 22434.2 22270.4 99.3%
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Ticket locks and virtualization

wall clock guest time time spent spinning
[s] [s] [s] [%]

LHP 2825.1 22434.2 22270.4 99.3%
yield 34.1 123.6 6.6 5.4%
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Conclusion

Lock-holder preemption quite serious:
7.6% guest time wasted

Helping locks:
3.9% system performance improvement!

(Amdahl's law explains why)

New ticket spinlocks:
30 secs kernbench takes 45 minutes

Helping locks help here, too
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