AMDH

Smarter Choice

How to Deal with Lock-Holder Preemption

Thomas Friebel

October 2008

Spinlock Basics AsmtDChn

Spinlocks wait actively as opposed to sleeping locks

Used for short critical sections

How to Deal with Lock-Holder Preemption

Spinlock Wait Times - Kernbench

number of waits
9000 —

AMD{T

Smarter Choice

| 1 native |

8000 -

7000 -

6000 -

5000 -

4000

number of waits
|

3000 -

2000 -

1000 A

o L] I

0 2 4 6 8 10 12 14 16 18 20 22 24

waiting time [27n cycles]

28 30

How to Deal with Lock-Holder Preemption

AMD{T

Smarter Choice

Spinlocks and Virtualization

How to Deal with Lock-Holder Preemption

Spinlocks and Virtualization

CPU

w W

AMD{T

Smarter Choice

How to Deal with Lock-Holder Preemption

Spinlocks and Virtualization AsmtDChn

oor [R)

u How to Deal with Lock-Holder Preemption

Spinlocks and Virtualization

CPU O

AMD{T

Smarter Choice

CPU 1

How to Deal with Lock-Holder Preemption

Spinlocks and Virtualization AsmtDChn

CPU O

CPU 1

CPU 2

CPU 3

! How to Deal with Lock-Holder Preemption

AMD{T

Smarter Choice

Is lock-holder preemption problematic?

! How to Deal with Lock-Holder Preemption

Kernbench in a Guest AsmtDChn

number of waits

2500

| = single |

2000 -

1500 4 =

1000

number of waits

500 -

0 : : : H | H lifpa - . .
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

waiting time [27n cycles]

How to Deal with Lock-Holder Preemption

Kernbench vs. 'while(true)’ AsmtDohn

number of waits

2500

= single
s | HP

o0
I]

1000

number of waits

s0 4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

waiting time [27n cycles]

How to Deal with Lock-Holder Preemption

Time, not Times

waiting time [ms]

4500

4000

3500

3000

2500

2000

1500

1000

500

msecs waiting

AMD{T

Smarter Choice

1 native
Emmm single
| HP

2 4 6 8 10 12 14 16 18 20

waiting time [27n cycles]

22

24

26

28

30

How to Deal with Lock-Holder Preemption

And in Numbers? AsmtDohn

guest time time spent spinning

[s] [s] [%0]

single kernbench 109.0 0.2 0.2%

kernbench vs while(1) 117.3 9.0 7.6%
difference 7.6%

How to Deal with Lock-Holder Preemption

AMD{T

Smarter Choice

What can we do about it?

How to Deal with Lock-Holder Preemption

Dealing with lock-holder preemption AsmtDoh“"

LHP avoidance

* No spinlock held in userspace

* Idea: Avoid preempting guest in kernel space
* Postpone guest switch to kernel exit

* Problem: extraordinary long critical sections, e.q.
Apache using sendfile()

Helping locks

* Instead of busy waiting, switch to preempted lock-
holder

* Problem: finding the preempted lock-holder

How to Deal with Lock-Holder Preemption

Helping locks: Ingredients

1) Guest kernel: new 'yield' hypercall when waiting
unusually long

* Modify spinlock loop

2) Reasonable threshold for 'unusually long'
* Histograms help

3) Selecting which VCPU to switch to

AMD{T

Smarter Choice

How to Deal with Lock-Holder Preemption

Threshold: Upper boundary

waiting time [ms]

4500

4000

3500

3000

2500

2000

1500

1000

500

msecs waiting

AMD{T

Smarter Choice

1 native
Emmm single
| HP

2 4 6 8 10 12 14 16 18 20

waiting time [27n cycles]

22

24

26

28

30

How to Deal with Lock-Holder Preemption

Threshold: Lower boundary

number of waits
9000 —

AMD{T

Smarter Choice

| 1 native |

8000 -

7000 -

6000 -

5000 -

4000

number of waits
|

3000 -
2000 -

1000 A

0+ |

waiting time [27n cycles]

0 2 4 6 8 10 12 14 16 18 20 22 24

30

How to Deal with Lock-Holder Preemption

Scheduling Strategy AsmtDoh“"

Good choices:

* VCPUs of the same VM to make progress locally
* (Potential) preempted lock-holders

* Cache-,near™ VCPUs

Neither/nor:
* VCPUs in user space

Bad choices:
* VCPUs which yielded recently

How to Deal with Lock-Holder Preemption

AMD{T

Smarter Choice

What about performance?

How to Deal with Lock-Holder Preemption

Histogram with 'yield' hypercall AsmtDohn

number of waits

2500

—— LHP
mmm LHP yield

2000

1500

1000

number of waits

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

waiting time [27n cycles]

How to Deal with Lock-Holder Preemption

Performance AsmtDChn

wall clock guest time time spent spinning

[s] [s] [s] [%]

LHP 34.8 117.3 9.0 7.6%
yield 33.5 108.4 0.0 0.0%
difference -3.9% -7.6% -7.6%

How to Deal with Lock-Holder Preemption

Efficiency

[= o~

while(true);
314 sec.

557 sec.
(=16x34.82)

AMD{T

Smarter Choice

How to Deal with Lock-Holder Preemption

Efficiency

[= o

while(true);
314 sec.

557 sec.
(=16x34.82)

kernbench
117 sec.

\

8% spinning
- saved

92% work
— constant

AMD{T

Smarter Choice

How to Deal with Lock-Holder Preemption

Efficiency

[= o~ —

while(true);
314 sec.

557 sec.
(=16x34.82)

kernbench
117 sec.

\

AMD{T

Smarter Choice

depends on
experiment time
- neutral

mainly induced by
kernbench work part
— constant

8% spinning
- saved

92% work
— constant

How to Deal with Lock-Holder Preemption

Efficiency

VMM + domO
125+1 sec.

kernbench
117 sec.

mainly induced by
kernbench work part
— constant

[N 8% spinning

- saved

117 sec

0/ — 0
117sec+126sec><7'6A) 377

2 Real result of 3.9% is reasonable

2> Highly efficient

AMD{T

Smarter Choice

How to Deal with Lock-Holder Preemption

AMD{T

Smarter Choice

FIFO ticket spinlocks

How to Deal with Lock-Holder Preemption

FIFO ticket spinlocks AsmtDCh“"

Next ticket in dispenser: queue tail

~Now serving" display at counter: queue head

L queue tail queue head
31 16115 0

Lock: atomic(ticket = tail++); while (head != ticket);

Unlock: atomic(head++);

How to Deal with Lock-Holder Preemption

FIFO ticket spinlocks

CPUO

CPU 1

CPU 2

CPU 3

AMD{T

Smarter Choice

How to Deal with Lock-Holder Preemption

AMD{T

TiCkEt IOCkS and VirtualizatiOn Smarter Choice

wall clock guest time time spent spinning

[s] [S] [s] [%]

LHP

2825.1 22434.2 22270.4 99.3%

How to Deal with Lock-Holder Preemption

Ticket locks and virtualization AsmtDChn

wall clock guest time time spent spinning

[s] [s] [s] [%]

LHP 2825.1 22434.2 22270.4 99.3%
yield 34.1 123.6 6.6 5.4%

How to Deal with Lock-Holder Preemption

Conclusion

Lock-holder preemption quite serious:
7.6% guest time wasted

Helping locks:
3.9% system performance improvement!
(Amdahl's law explains why)

New ticket spinlocks:
30 secs kernbench takes 45 minutes

Helping locks help here, too

AMD{T

Smarter Choice

How to Deal with Lock-Holder Preemption

AMD{T

Smarter Choice

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or
other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks
of their respective owners.

©2008 Advanced Micro Devices, Inc. All rights reserved.

How to Deal with Lock-Holder Preemption

