
How to Deal with Lock-Holder Preemption

Thomas Friebel

October 2008

How to Deal with Lock-Holder Preemption2

Spinlock Basics

Spinlocks wait actively as opposed to sleeping locks

Used for short critical sections

How to Deal with Lock-Holder Preemption3

Spinlock Wait Times – Kernbench

How to Deal with Lock-Holder Preemption4

Spinlocks and Virtualization

How to Deal with Lock-Holder Preemption5

Spinlocks and Virtualization

How to Deal with Lock-Holder Preemption6

Spinlocks and Virtualization

How to Deal with Lock-Holder Preemption7

Spinlocks and Virtualization

How to Deal with Lock-Holder Preemption8

Spinlocks and Virtualization

How to Deal with Lock-Holder Preemption9

Is lock-holder preemption problematic?

How to Deal with Lock-Holder Preemption10

Kernbench in a Guest

How to Deal with Lock-Holder Preemption11

Kernbench vs. 'while(true)'

How to Deal with Lock-Holder Preemption12

Time, not Times

How to Deal with Lock-Holder Preemption13

And in Numbers?

guest time time spent spinning
[s] [s] [%]

single kernbench 109.0 0.2 0.2%
kernbench vs while(1) 117.3 9.0 7.6%
difference 7.6%

How to Deal with Lock-Holder Preemption14

What can we do about it?

How to Deal with Lock-Holder Preemption15

Dealing with lock-holder preemption

LHP avoidance

 No spinlock held in userspace

 Idea: Avoid preempting guest in kernel space

 Postpone guest switch to kernel exit

 Problem: extraordinary long critical sections, e.g.
Apache using sendfile()

Helping locks

 Instead of busy waiting, switch to preempted lock-
holder

 Problem: finding the preempted lock-holder

How to Deal with Lock-Holder Preemption16

Helping locks: Ingredients

1) Guest kernel: new 'yield' hypercall when waiting
unusually long
● Modify spinlock loop

2) Reasonable threshold for 'unusually long'
● Histograms help

3) Selecting which VCPU to switch to

How to Deal with Lock-Holder Preemption17

Threshold: Upper boundary

How to Deal with Lock-Holder Preemption18

Threshold: Lower boundary

How to Deal with Lock-Holder Preemption19

Scheduling Strategy

Good choices:

 VCPUs of the same VM to make progress locally

 (Potential) preempted lock-holders

 Cache-„near“ VCPUs

Neither/nor:

 VCPUs in user space

Bad choices:

 VCPUs which yielded recently

How to Deal with Lock-Holder Preemption20

What about performance?

How to Deal with Lock-Holder Preemption21

Histogram with 'yield' hypercall

How to Deal with Lock-Holder Preemption22

Performance

wall clock guest time time spent spinning
[s] [s] [s] [%]

LHP 34.8 117.3 9.0 7.6%
yield 33.5 108.4 0.0 0.0%
difference -3.9% -7.6% -7.6%

How to Deal with Lock-Holder Preemption23

Efficiency

How to Deal with Lock-Holder Preemption24

Efficiency

How to Deal with Lock-Holder Preemption25

Efficiency

How to Deal with Lock-Holder Preemption26

Efficiency

117 sec
117 sec126 sec

×7.6% = 3.7%

➔ Real result of 3.9% is reasonable

➔ Highly efficient

How to Deal with Lock-Holder Preemption27

FIFO ticket spinlocks

How to Deal with Lock-Holder Preemption28

FIFO ticket spinlocks

Next ticket in dispenser: queue tail

„Now serving“ display at counter: queue head

Lock: atomic(ticket = tail++); while (head != ticket);

Unlock: atomic(head++);

How to Deal with Lock-Holder Preemption29

FIFO ticket spinlocks

How to Deal with Lock-Holder Preemption30

Ticket locks and virtualization

wall clock guest time time spent spinning
[s] [s] [s] [%]

LHP 2825.1 22434.2 22270.4 99.3%

How to Deal with Lock-Holder Preemption31

Ticket locks and virtualization

wall clock guest time time spent spinning
[s] [s] [s] [%]

LHP 2825.1 22434.2 22270.4 99.3%
yield 34.1 123.6 6.6 5.4%

How to Deal with Lock-Holder Preemption32

Conclusion

Lock-holder preemption quite serious:
7.6% guest time wasted

Helping locks:
3.9% system performance improvement!

(Amdahl's law explains why)

New ticket spinlocks:
30 secs kernbench takes 45 minutes

Helping locks help here, too

How to Deal with Lock-Holder Preemption33

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or
other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks
of their respective owners.

©2008 Advanced Micro Devices, Inc. All rights reserved.

