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Spinlock Basics AsmtDChn

Spinlocks wait actively as opposed to sleeping locks

Used for short critical sections
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Spinlock Wait Times - Kernbench
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Spinlocks and Virtualization
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Spinlocks and Virtualization
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Spinlocks and Virtualization AsmtDChn
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Spinlocks and Virtualization
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Spinlocks and Virtualization AsmtDChn
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Is lock-holder preemption problematic?
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Kernbench in a Guest AsmtDChn
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Kernbench vs. 'while(true)’ AsmtDohn
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Time, not Times
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And in Numbers? AsmtDohn

guest time  time spent spinning

[s] [s] [%0]

single kernbench 109.0 0.2 0.2%

kernbench vs while(1) 117.3 9.0 7.6%
difference 7.6%
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What can we do about it?
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Dealing with lock-holder preemption AsmtDoh“"

LHP avoidance

* No spinlock held in userspace

* Idea: Avoid preempting guest in kernel space
* Postpone guest switch to kernel exit

* Problem: extraordinary long critical sections, e.q.
Apache using sendfile()

Helping locks

* Instead of busy waiting, switch to preempted lock-
holder

* Problem: finding the preempted lock-holder
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Helping locks: Ingredients

1) Guest kernel: new 'yield' hypercall when waiting
unusually long

* Modify spinlock loop

2) Reasonable threshold for 'unusually long'
* Histograms help

3) Selecting which VCPU to switch to
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Threshold: Upper boundary
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Threshold: Lower boundary
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Scheduling Strategy AsmtDoh“"

Good choices:

* VCPUs of the same VM to make progress locally
* (Potential) preempted lock-holders

* Cache-,near™ VCPUs

Neither/nor:
* VCPUs in user space

Bad choices:
* VCPUs which yielded recently
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What about performance?
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Histogram with 'yield' hypercall AsmtDohn
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Performance AsmtDChn

wall clock guest time time spent spinning

[s] [s] [s] [%]

LHP 34.8 117.3 9.0 7.6%
yield 33.5 108.4 0.0 0.0%
difference -3.9% -7.6% -7.6%
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Efficiency
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Efficiency
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Efficiency

[ = o~ —

while(true);
314 sec.

557 sec.
(=16x34.82)

kernbench
117 sec.

\

AMD{T

Smarter Choice

depends on
experiment time
- neutral

mainly induced by
kernbench work part
— constant

8% spinning
- saved

92% work
— constant
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Efficiency

VMM + domO
125+1 sec.

kernbench
117 sec.

mainly induced by
kernbench work part
— constant

[N 8% spinning

- saved

117 sec

0/ — 0
117sec+126sec><7'6A) 377

2 Real result of 3.9% is reasonable

2> Highly efficient
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FIFO ticket spinlocks
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FIFO ticket spinlocks AsmtDCh“"

Next ticket in dispenser: queue tail

~Now serving" display at counter: queue head

L queue tail queue head
31 16115 0

Lock: atomic( ticket = tail++ ); while ( head != ticket );

Unlock: atomic( head++ );
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FIFO ticket spinlocks
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TiCkEt IOCkS and VirtualizatiOn Smarter Choice

wall clock guest time time spent spinning

[s] [S] [s] [%]

LHP

2825.1 22434.2 22270.4 99.3%
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Ticket locks and virtualization AsmtDChn

wall clock guest time time spent spinning

[s] [s] [s] [%]

LHP 2825.1 22434.2 22270.4 99.3%
yield 34.1 123.6 6.6 5.4%
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Conclusion

Lock-holder preemption quite serious:
7.6% guest time wasted

Helping locks:
3.9% system performance improvement!
(Amdahl's law explains why)

New ticket spinlocks:
30 secs kernbench takes 45 minutes

Helping locks help here, too
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