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ABSTRACT

The random deployment process and the unpredictable move-
ment of sensor nodes lead to a high demand for an exact

and reliable self localization process. Existent methods are

mostly not feasible on strongly resource limited sensor nodes

with an absolute minimum of energy. Thus, this paper de-

scribes the "Distributed Least Squares (DLS)"-algorithm that
reduces the needed amount of energy to a minimum by dis-

tributing the complex localization process. DLS is a resource-
aware localization method that achieves 47% computation

savings and 86% energy savings compared to the reference

method, a "Fully Distributed Multilateration” on every sen-

sor node. In the end, DLS significantly extends the overall

network lifetime.
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1. INTRODUCTION

Wireless sensor networks (WSN) are composed of hun-
dreds of tiny electronic devices, able to sense the envi-
ronment, compute simple tasks and communicate with
each other. Gathered information (e.g. temperature,
humidity etc.) are transmitted in a multi hop fashion
over direct neighbors to a data sink, where the data is
interpreted [1]. With methods such as self configura-
tion and self organization the network reacts to node
failures.

Due to the desired node size of only a few cubic mil-
limeters, the dimensions of the communication module
and the battery are critical. Consequently, the scarcest
resource within a network is the available energy [2].
Therefore, achieving a long lifetime of the sensor net-

work requires low power hardware as well as optimized
algorithms.

After deploying the sensor network over an area of
interest, initially the sensor nodes carry no position in-
formation. Sensor information are only useful if com-
bined with their geographical position. Possible posi-
tioning technologies are the Global Positioning System
(GPS), the Global System for Mobile Communication
(GSM) or soon the European System Galileo [3],[4],[5].
However, these systems are unsuitable for miniaturized
sensor nodes and could only be used for a small num-
ber of nodes, due to the size of the hardware, the high
prices and the high energy requirements. Thus, it is
a common technique to integrate an existing localiza-
tion system on some more powerful nodes, further called
beacons. Then, all remaining nodes estimate their own
position with measurements such as distances to these
beacons autonomously. A node’s position is very impor-
tant, because (i) sensed data without a location where
they were gathered are generally useless, (ii) full covered
sensor networks enable energy aware geographic rout-
ing, (iii) self configuration and self organization are key
mechanisms for robustness and can be easily realized
with position information, and (iv) in many applica-
tions the position itself is the information of interest.

In this paper we present a new approach to energy-
saving determination of unknown coordinates with a
higher precision compared to approximate positioning
methods [6]. Using the ”Distributed Least Squares-
(DLS)”-algorithm, all calculations are split between the
resource-limited sensor nodes and the high-performance
base station.

This paper is structured as follows: In Section 2 we
give a basic overview of the methods for localization
in wireless sensor networks. In Section 3 we describe
the position estimation based on relationships to known
points. Next, we present in Section 4 our new DLS-
algorithm to split the least squares method with the
aim to minimize the load on the sensor nodes. Further-
more, the complexity of DLS is analyzed in Section 5,
simulated in Section 6 and discussed in Section 7. We
finally conclude the paper with Section 8.



2. RELATED WORK

Considering energy constraints in sensor networks,
the group of approximate algorithms consumes less pow-
er, but estimates a position with a higher localization
error (see Fig. 1). Different approximate (also called
coarse-grained) localization approaches exist in the lit-
erature [7, 6, 8, 9, 10].

Exact localization of a sensor node features high pre-
cision and is based on solving a linear system of equa-
tions with coordinates of the beacons and distances
to them. With at least three beacons, required in 2-
dimensions, sensor nodes estimate their positions via
trilateration. More beacons than required result in an
over determined system of equations that must be solved
with e.g. aleast-squares method (multilateration). The
multilateration produces accurate results, however it is
complex and resource-intensive and therefore not fea-
sible on resource-limited sensor nodes. Nevertheless,
different authors deals with reducing the complexity of
these methods [11, 12, 13, 14, 15].
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Figure 1: Classification of common localization
techniques in sensor networks.

We demand exact localization methods that work on
tiny sensor nodes with highly limited energy resources.
To achieve this, we transfer the complex calculations
such as matrix multiplication or matrix inversion to
the base station. Consequently, only simple calcula-
tions have to be executed on the sensor nodes. Ad-
ditionally, we reduce the communication and memory
requirements through optimizations of the proposed al-
gorithm.

3. BACKGROUND: MULTILATERATION

Estimating the position of an unknown point P(x,y)
requires at least three known points in two-dimensions.
With m known coordinates B(x;,y;) and its distances
r; to them we obtain:

(z—z) 4+ W—w)=r2 (i=12,....m) (1)

This system of equations must be linearized by using
the j’th equation of (1) as the linearization tool. By

adding and subtracting z; and y; to all other equations
this leads to:

(2= +ay =2+ =y +y— ) =17 (g

(i=1,2,...,5—1,j+1,....m)

With the distance r; (r;), the distance between the
unknown point and the j’th (i’th) beacon, and the dis-
tance d;;, the distance between beacon B; and Bj, this
leads, after resolving and simplifying, to:

(@ =) (2 — ;) + (v — y;) (Wi — yj) 3)
=1 [7’]2 —r2+ d?j] = by
Because it is not important which equation we use as
a linearization tool, j = 1 is sufficient. This is equal to
choosing the first beacon and if i = 2,3, ..., m this leads
to a linear system of equations with m—1 equations and
n = 2 unknowns.

(x—21)(m2 —21) + (Y —y1) (Y2 — 1) = b
(x—21)(w3 — 1)+ (y—y1)(yza —y1) = b3
(2 = 21)(wm —21) + (U = 9) W — 1) = b

(4)
This system of equations can be written in the matrix
form Ax = b with:

T2 — T1
r3 — T1

Y2 — Y1
Ys — Y1
A= .

Tm —T1 Ym — Y1

( X x ) ,]
Yy Y1
é [T% T%n d%nl]

Now this basic form has to be solved using the linear
least squares method. Due to the fact that overdeter-
mined systems of equations with m >> n have no ex-
act solution for Ax = b, we have to apply the L2-norm.
This is also called the Euclidean norm, which minimizes
the sum of the squares of the residuals:

N[ =

2 .2 2
r% —r% —|—d%1
ry —r3+d3;

(5)

Minimize
x e R
A trivial solution of the least squares problem is to

reconvert after x. In this case, the unique solution of
Ax =~ b is given by:

||Ax = bll2. (6)

||[Ax — b||s — AT Ax = ATb. (7)

Solving normal equations is a good choice if the lin-
ear system has many more equations than unknowns,



i.e. m >> n, because after the multiplication A7 A the
result is only a quadratic [n X n]-matrix. This simpli-
fies the following computation and makes it easier to be
implemented in software.

4. ALGORITHM DESCRIPTION

DLS builds on the mathematical formulations intro-
duced in the background section. By using the lineariza-
tion tool the matrices in Equ. (5) have two important
benefits. First, all elements in the coefficient matrix A
are generated by beacon positions Bi(x,y) ... By (z,y)
only. We assume in the first instance that all sen-
sor nodes can establish communication links between
all beacons, then matrix A is the same on every sen-
sor node. Second, vector b contains distances between
sensor nodes and beacons 1 ...7,,, which have to be
estimated on every sensor node independently. The
result is that the normal equations can be split into
two parts - a more complex part, the precalculation:
A, = (AT~A)71 AT and a simple part: A, -b, fur-
ther called the postcalculation. Here, the precalculation
is executed on one high performance node, which addi-
tionally avoids high redundancy, because normally this
precalculation has to be executed on all sensor nodes
separately. It is very important to emphasize that the
precalculation is identical on each sensor node. Thus,
it is calculated only once, conserving expensive energy
resources. The simple postcalculation is then executed
on each sensor node with its individual distance mea-
surements to all beacons. This approach complies with
two important design strategies for algorithms in large
sensor networks - a resource-aware and distributed
localization procedure. Finally, this can be achieved
with less communication overhead required for other
exact algorithms.

At this point we briefly describe the algorithm pro-
cess. DLS is divided into three phases, which are shown
in Fig. 2.

e Phase 1: Initialization
- All beacons send their position B(z,y)
to the base station.

e Phase 2: Complex Precalculation (central)
- Base station builds matrix A and vector d,.
- Starting the complex precalculation of matrix A,.

e Phase 3: Simple Postcalculation (distributed)

- Base station sends matrix A,

and vector d, to all sensor nodes.

- Sensor nodes determine the distance to
every beacon ry..ry,.

- Sensor nodes receive matrix A,

and vector d,, built vector

b and estimate their own position
P.st(x,y) autonomously.

S. THEORETICAL ANALYSIS

5.1 Computation Complexity

At this point it is important to compare the complex-
ity of the normal equations with the postcalculation.
In order to define the complexity mathematically, we
count the number of floating point operations (flops),
which is a commonly used method in literature. It is
described in [16] that the total complexity for the least
squares method with m beacons and n = 2 unknowns
is 15m — 5 flops. That means, with 100 beacons and the
summation of 1 and y; we need 1497 floating point op-
erations. Now it can be determined what we save on the
sensor nodes without complex precalculations regard-
ing only the remaining postcalculation. On the basis
of (7), the base station precalculates 4, = (AT A)~tAT
and d, = d?. The matrix 4, and vector d, are sent
to all sensor nodes. Together with the distances r to
all beacons, which every sensor node must determine
itself, the postcalculation requires 8m — 11 flops, which
leads with 100 beacons and the summation of x; and
y1 to 791 flops. It results that DLS saves 47.16% on the
sensor nodes compared to the full calculation.

5.2 Communication Effort

Due to the fact that communication consumes most
of the energy, data transfer between sensor nodes must
be minimized. Particularly, sending data over long dis-
tances stresses the energy capacity of sensor nodes. Com-
munication between base station and beacons is less
critical and must be preferred if possible. Therefore,
we classify communication in two phases. An uncriti-
cal phase, where all beacons send their positions to the
base station. This causes no energy loss on the sen-
sor nodes. Additionally, in a critical phase, where the
base station sends precalculated information to the sen-
sor nodes that have, in theory, to receive only. Due to
errors in the transmission channel and protocols that
require acknowledge packets etc., transmitting/sending
is never lossless in practice. Furthermore, the base sta-
tion cannot reach every sensor node in one hop, which
demands multi-hopping over some nodes.

Here, we focus on a theoretical examination of the
algorithm that is, for the moment, independent of pro-
tocol definitions and media access operations. Hence,
every sensor node must receive the precalculated matrix
A, and vector d,, with [n-(m — 1) 4+ (m — 1)] elements.
This results in receiving (3m — 3) elements, which are
1188 bytes with 100 beacons and floating point repre-
sentation of every element.!

1On common microcontrollers, that are presently integrated
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Figure 2: Procedure of the DLS-algorithm, which is divided into three phases.

5.3 Memory Requirement

The reduced calculations must be feasible on sensor
nodes with a very small memory, mostly not more than
a few kilobytes. In our case, the memory consuming
operation is always A, -1 - (r —r> 4+ d,). In the worst
case A, and r plus d, must be stored temporarily in
memory before the execution on the sensor node can
start. In more detail [2- (m—1)]+(m—1)+(m—1) =
(4m — 4) elements must be stored.

6. SIMULATION

In the following, we show simulation results of a packet
simulator. Here, DLS was compared to a direct com-
petitor, the ” Fully Distributed Multilateration” (FDM),
which was among others used by Savvides et al. in [11]
in a similar way. FDM is fully distributed, because ev-
ery sensor node receives beacon positions directly from
beacons and executes both the pre- and postcalculation
completely independent.

The simulation was performed in J-Sim, a sensor net-
work simulation framework by Tyan et al. [17], in which
we added a more complex and therefore more realistic
energy model. Our energy model considers the follow-
ing parameter of energy consumption 2:

e Power-mode dependent energy consumption with
sleep and active mode

e Switching energy from sleep to active mode
e Distance dependent transmission of packets

e Computation complexity of the pre- and postcal-
culation

on sensor node platforms, every element is stored in floating
point representation as a 4 byte number.

2Details of our energy model or the source code can be ob-
tained from frank.reichenbach@uni-rostock.de.

e Distance estimations with RSS measurements

e Position estimation via GPS on beacons

The specific energy parameters are based on the
MICAZ2-mote, which is currently the most popular sen-
sor node platform. Beacons have batteries with 21600
Joule, sensor nodes 6650 Joule and base stations are not
limited due to access to an infrastructure. The network
consists of one base station at position P(z,y) = 1,1
and 315 randomly uniformly deployed nodes, including
15 beacons (with transmission range 60m) and 300 sen-
sor nodes (with transmission range 20m) in a sensor
field with the dimension 100m x 100m. We decided to
use no special routing protocols, but restricted flooding
to achieve a fair comparison between both algorithms.
Restricted means that no more packets are forwarded
by a node if all data required for computation have been
received.

7. DISCUSSION

Fig. 3 shows the accumulated energy consumption
of all nodes in the field. The first position packet for
FDM was received at 66,82 seconds simulation time. Af-
ter 16, 20s every node received all beacon positions and
started the computation process to estimate its posi-
tion. In this communication phase 224 position packets
were sent by the beacons and 52429 packets were re-
ceived by all nodes (95,42% by sensor nodes), which is
highly energy-intensive.

DLS started phase 1 at 83,32s by sending the first
position packet. After that, phase 2 began and ended
at 90, 78s. At this time the last sensor node received a
packet with the precalculated matrix A, and was there-
fore able to estimate its position. The whole process
required the sending of 240 packets and the receiving of
2320 packets, where 12,93% were received by the sen-
sor nodes only. Summarized, DLS consumed 46, 64.J
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Figure 3: Accumulated energy usage of all nodes in the sensor network.

less energy than FDM, which is equal to 86,48% sav-
ings. This is mainly due to three reasons. First, every
sensor node must receive only one packet. After receiv-
ing this packet the node switched its transceiver to the
very low energy consuming sleep state. Second, com-
pared to FDM, a very simple calculation is executed on
every sensor node only. And third, instead of computing
the matrix A, on all sensor nodes, which is performed
once at the base station, high redundant computations
are avoided. Both algorithms estimated the positions
with a localization error under 10~14%, reflecting the
exact distances used.

8. CONCLUSION

We presented the ”Distributed Least Squares”-algo-
rithm (DLS), which allows exact position estimation
with minimal energy consumption. This algorithm is
based on the least squares method, which is, for many
beacons, unfeasible on resource constrained sensor nodes.
However, we decreased communication overhead and
computation complexity while keeping its high preci-
sion. This can be achieved by splitting the linear least
squares method into a complex part, precalculated on a
high-performance base station, and a very simple post-
calculation on every sensor node. Thus, we eliminated
redundancy, because normally every sensor node has

to process the precalculation. With this approach and
based on a network containing 100 beacons we achieved
47.16% savings in computation on every sensor node in
comparison to the ”Fully Distributed Multilateration”
(FDM), as a direct competitor. Moreover, DLS needs
only a few kilobytes of memory on the sensor nodes.
Finally, we showed in the packet-simulator J-Sim that
DLS consumes less energy than FDM - more than 86%
savings in total. One next step will be to implement
DLS on a sensor network platform and test it in a real
world environment.
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