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ABSTRACT
Energy efficiency in pervasive computing is crucial for de-
vices operated by battery. To provide energy efficiency we
created an energy efficient middleware, called SANDMAN.
In this paper we present an overview on the past research
done in the SANDMAN project and the current and future
directions of our work.

1. INTRODUCTION
Energy is a crucial resource in pervasive computing sys-

tems with mobile devices. These devices are often embedded
into everyday items and can not be provided with a large
battery or a fixed connection to the power grid. Thus, the
efficient operation of devices with respect to energy is a ma-
jor challenge of such systems. When designing our pervasive
computing middleware BASE [2], we experienced this chal-
lenge and decided to integrate algorithms and mechanisms
for energy-efficiency in our middleware.

When starting our work, we looked at the main sources
of energy consumption. The first thing we learned is that
while a lot of work has been done to lower the energy con-
sumption for sending and receiving data, a large additional
amount of energy is consumed by idle devices waiting to be
used. As an example, it takes 805 mW to keep an IEEE
802.11 network interface up and running without sending
data [3]. Idle devices provide currently unneeded and thus
unnecessary resources and consume energy by doing so. This
energy can be saved by temporarily switching such devices
in a low-energy sleep mode. However, doing so results in
a number of challenges that must be addressed to keep the
system operational, e.g., network connectivity and service
discovery.

In this paper we report on the challenges we met when
designing an energy-efficient middleware for pervasive com-
puting that allows to power down currently unused devices.
We also discuss solutions to overcome these challenges and
present the current and future work done in the project.

The paper is structured as follows. First, we define our
system model and assumptions. After that we describe the
features of our existing middleware BASE that are needed
to understand our approach. Following to this we present
our approach towards an energy-efficient middleware and
evaluate our middleware briefly. Finally, we discuss current
work and how we plan to proceed from the current project
state, give the related work, and finish the paper with a
short conclusion.

2. SYSTEM MODEL AND ASSUMPTIONS
Our targeted system class consists of a number of battery-

operated mobile devices. Each device is equipped with one
or more network interfaces. Using these interfaces the de-
vices form a number of wireless mobile ad hoc networks
(MANETs). Basic MANET functionality, e.g., addressing,
remote execution, is offered by our pre-existing middleware,
which we assume to be installed on each device. In addi-
tion, we assume that each device has two operational modes:
a fully operational AWAKE mode and an energy-efficient
SLEEP mode. While in SLEEP mode, the device can not
perform any operations or communicate. To switch back
to AWAKE mode, the device has an internal timer, e.g., a
watch dog timer, which reactivates the device after a pre-
determined time. This simple model can be extended to
multiple different operational modes. However, in this pa-
per we restrict ourselves to the simple model to ease the
description of the main concepts used in our approach.

3. BASE
We designed our energy-efficient middleware as a number

of extensions to our existing middleware BASE. This allowed
us to concentrate on the new challenges imposed by our need
to save energy while reusing a lot of previous work. Before
describing our extensions in more detail, in this section we
present the parts of the basic middleware that are needed to
understand the extensions.

BASE is designed to be a minimal yet flexible commu-
nication middleware for pervasive computing. It does not
rely on any external infrastructure, enabling the devices to
cooperate with each other in a peer-to-peer fashion.

The architecture of BASE is shown in Figure 1. The mid-
dleware is structured as an extensible micro broker. The
broker itself manages interactions with remote devices and
synchronizes them with respect to the application’s desired
interaction model. To communicate, (semantic, serializer,
modifier and transceiver) plugins are used to add support for
different communication technologies and protocols. As an
example, to access a CORBA service, the device developer
only has to integrate an IIOP plugin into the BASE con-
figuration. The management of these plugins is the respon-
sibility of the plugin manager. At runtime the middleware
detects nearby devices (with a discovery plugin), negotiates
communication abilities with them and allows the local ap-
plication to access other devices using a service abstraction.
Once an interaction takes place, BASE automatically builds
a suitable protocol stack by selecting and integrating multi-
ple plugins. To adapt to networking changes, BASE is able
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Figure 1: BASE Architecture

to reselect the used plugins dynamically. More information
about BASE can be found in [2].

4. SANDMAN
To add energy efficiency support to our existing middle-

ware BASE, we extended it with a number of system ser-
vices to allow an energy-efficient operation of each device.
The resulting new middleware system is called SANDMAN.
It stays fully compatible with existing BASE installations.
SANDMAN is designed around three main concepts to save
energy:

1. Reduce the energy consumed by transferring data by
selecting the most energy-efficient communication pro-
tocols that are available in a given situation.

2. Switch idle devices to their low power SLEEP mode to
reduce unnecessary standby energy consumption.

3. Allow clients to select the most energy efficient service
to create energy-efficient application configurations.

The first concept can be realized easily with BASE using
its existing ability to select plugins dynamically. To do
so, the plugin descriptions must be enhanced with informa-
tion about their energy consumption and a suitable selec-
tion strategy must be provided and integrated. Whenever a
new protocol stack is selected, the selection strategy accesses
the plugin descriptions and selects the most energy efficient
configuration. The second concept, the deactivation of idle
devices presented us with a number of challenges, which we
discuss in the following sections. The third concept, the se-
lection of energy-efficient services is subject to current and
future work and discussed later.

4.1 Transition Scheduling
The first challenge when deactivating idle devices is to

schedule deactivations properly. Often, it is not easy to
decide whether a device is unused and can be deactivated.
It may be idle at the moment but play a crucial role in
the execution of an application in the near future. As an
initial approach, we relied on a transition strategy with a
fixed inactivitiy threshold. Such approaches are well known
from the area of Dynamic Power Management. They can
be implemented very efficiently even on resource-restricted
devices, as they only require a timer to operate. In addi-
tion, we added an interface to the middleware that allows
application code, e.g., service implementations, to explicitly
specify that the device is currently in use and should not be
deactivated. Further information is provided by the BASE
microbroker, which notifies SANDMAN about incoming and
pending requests, as well as currently used local services.
This rather simple approach works well in cases where spe-
cific usage patterns are difficult to determine. In other sce-
narios, more complex idle detection mechanisms, e.g., based
on statistical approaches, could be beneficial. Finally, BASE
handles each interaction between a client and a service in-
dividually. While this results in a very flexible system, we
decided to add an additional abstraction for service usages,
so-called sessions. Using a session, a client can specify that
it currently uses a given service. This information is then
forwarded to SANDMAN which will not deactivate the de-
vice offering the service, even if there is no client interaction
for some time. To cope with suddenly disappearing clients,
leases are used. In addition, sessions can be used by clients
to negotiate with the service that the latter may sleep even
while the client is using it, e.g., because the client can cope
with a given latency. Client and server can also negotiate
synchronization times, i.e., they will communicate at given
times only, allowing both to temporarily sleep. In our im-
plementation, the ability to open a session is provided but
negotiation strategies are subject to future work and must
be provided by application developers at this time.

4.2 Service Discovery
Before using them, clients must first discover devices and

their services. However, existing discovery approaches like
UPnP or Jini cannot handle deactivated devices and wrongly
assume that they have left the system. Thus, before de-
activating a device, we must make sure, that it stays dis-
coverable. To do so, we developed a self-adaptive discov-
ery protocol that can handle deactivated devices. Our ap-
proach works as follows: at startup time, each device op-
erates autonomously and answers discovery requests from
remote clients directly. In this state the system resembles a
classical UPnP discovery system. During the system opera-
tion, the devices cluster themselves with neighboring devices
that have the same mobility pattern as themselves. This
ensures that the resulting clusters are highly stable, which
is necessary to achieve long sleep times without introduc-
ing errors in the discovery process. Otherwise, devices that
left the communication range of their clusters while sleeping
could lead to phantom discoveries. Each cluster has a sin-
gle leader, the so-called cluster head (CH). Once a cluster
is formed and a CH elected, all devices in the cluster switch
their discovery system to a registry-based approach, resem-
bling Jini. The CH collects information about all services
in its cluster and answers discovery requests from clients for
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Figure 2: SANDMAN Approach

them as shown in Figure 2. This allows all other devices in
the cluster to switch to their SLEEP mode, while the CH
keeps advertising them. In addition to this, the CH can act
as a proxy to detect new services for sleeping client devices.
To accept new client requests or receive information about
newly detected services, each device in a cluster awakes reg-
ularly.

An overview of the protocol used by SANDMAN to put
devices to their SLEEP mode is given in Figure 3. In this
example, we assume that a cluster consisting of two devices
n1 and n2 has already been formed and omit the messages
necessary for cluster management. At the beginning, n2

starts its inactivity threshold timer. If n2 is idle for tis, it
decides to go to sleep and sends a SLEEP ANC message
to its CH n1, including the desired sleep time tsd. The CH
can modify this sleep time to allow cooperative scheduling
algorithms as discussed later. It stores the new sleep time ts

in its local database for n2 and sends back a SLEEP ACK
message with the sleep time. After receiving this message,
n2 configures its internal watch dog timer to reawake after
tss and transitions to its sleep mode. Meanwhile, a client
device n3 contacts the CH to search for services. The CH
finds that n2 offers a service suitable for n3 and announces
this to the client device. In this message, it includes the
service descriptions, the plugins that can be used to contact
the device as well as the remaining sleep time of n2 (zero
if the device is awake). The client waits for the specified
time until n2 awakes. Then, it contacts n2 directly and
uses its service. A special case arises, if the device wants
to sleep shortly after a client device discovered one of its
services. The CH cannot know, if the client will contact
the device and thus denies any sleep requests from a device,
if the time between its last discovery and the sleep request
is smaller than a given threshold ta. Once a service is no
longer used, its device restarts its inactivity threshold timer
and the algorithm starts anew. More information about the
service discovery approach and the protocols used (e.g., for
clustering) can be found in [9] and [8].

4.3 Connectivity Preservation
In addition to keeping the devices discoverable, the net-

work connectivity must be maintained. If we deactivate de-
vices at will, we will most likely lower the connectivity of the
network. We may even induce network partitioning. Luck-
ily, we can reuse the solution chosen for the discovery and
put the responsibility for routing on the CHs. In addition,
we have to make sure that the CHs form a connected over-
lay network and can reach all nodes. To do so we design
our clustering approach such that it not only uses the mo-
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Figure 3: SANDMAN Protocol Overview

bility patterns of devices for its clustering decision but also
the current neighbor graph of the devices. Two devices are
clustered iff they have the same neighbors. This makes sure
that each one of them can act as CH and will be able to
reach all neighbors. An example for this are devices carried
by the same user. These devices are nearby and typically
have the same neighbors. Note that to really ensure this
property, we have to recheck it regularly to cope with later
connectivity changes.

This approach consumes additional energy, first because
fewer devices are clustered and second to perform the regular
check. If we can accept a certain (small) loss in connectivity,
we can schedule the rechecks to occur only rarely or omit
them altogether. In addition we can accept a certain amount
of difference in neighboring sets when clustering devices, e.g.,
we cluster devices when their neighborhoods overlap by at
least 90%. Using these parameters we can adapt the system
behaviour between more connectivity preserving and more
energy-efficient as needed.

4.4 Interaction Latency
When a device is asleep it cannot be reactivated prelim-

inarily, e.g., to handle an unexpected request by the user.
Clearly, in some cases the user might be able to manually re-
activate a device prior to its scheduled awake time by press-
ing a special button, etc. However, we do not assume that
this is always possible or even the normal case. Thus, a
client wanting to use a sleeping device must wait until the
device awakes on its own. This slows down the client’s exe-
cution and may consume additional energy. Therefore, it is
important to lower the experienced interaction latency. To
do so, we propose to cooperatively schedule the sleep times
of all devices in a cluster. To realize this, SANDMAN allows
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Figure 4: Energy Savings

CHs to manage the sleep schedule of its whole cluster locally
and to coordinate all devices accordingly. Currently, we are
examining two cooperative scheduling algorithms: the first
interweaves the sleep times of devices offering the same ser-
vice such that the time until one of these devices awakes is
minimized. The second keeps one device awake all the time,
allowing clients to use a service without any additional de-
lay. The device that must stay awake is chosen by the CH in
a round-robin fashion. Our current implementation includes
only a simple scheduling algorithm that operates on isolated
devices. Cooperative scheduling algorithms are subject to
current and future work.

4.5 Evaluation
To evaluate the energy savings that can be achieved by

putting idle devices into their SLEEP mode, we performed a
number of experiments using the Network Emulation Toolkit
(NET) [5]. NET is a Linux-based emulation environment
developed at Stuttgart University for testing and evaluating
network protocols in both stationary and mobile environ-
ments. For our experiments we defined scenarios with dif-
ferent mobility characteristics, e.g., device speed and device
group size. Figure 4 shows the resulting energy savings for
three scenarios with a device speed of 2 m/s and three dif-
ferent group sizes, single devices (Scenario D), groups of 4
(Scenario E) and groups of 10 devices (Scenario F). Clearly,
a group size of one leads to the well known random waypoint
model. The results are shown for different sleep times ∆ts

and are averaged over all devices in a single cluster, i.e. they
include the overhead experienced by the CH.

In Scenario D, the devices consume more energy than
without SANDMAN. This is due to the fact that devices
are clustered rarely and the message overhead due to clus-
tering consumes more energy than is saved by sleeping de-
vices. Therefore, for this scenario, SANDMAN is not ben-
eficial and should not be used. However, for larger group
sizes, the devices are able to save up to 484 mW per node
for ∆ts=150 s and a group size of 10. For the chosen con-
tinuous device consumption of 805 mW, this is a saving of
approximately 60% per device, including CHs and unclus-
tered devices. For scenarios with other movement speeds the
results are accordingly, while total values for higher speeds
are lower. This is the case, as with higher mobility, clusters
become less stable and devices must recluster more often.
We can observe the same effect when comparing scenarios

with identical group sizes but different movement speeds.
The achieved energy savings are lower for higher speeds. A
much more elaborate evaluation of our approach, including
message overhead, savings, delays and discovery errors can
be found in [8].

5. CURRENT AND FUTURE ACTIVITIES
SANDMAN so far provides basic functionalities to enable

energy-efficient device operation. However, different possi-
bilities to further enhance the achievable energy savings exist
and are currently evaluated by us. The most promising ones
are discussed in the following sections.

5.1 Transition Scheduling
The transition scheduling strategy currently implemented

in SANDMAN does not take into account other devices in
a cluster. Instead it operates completely isolated. In addi-
tion, we use fixed, preset values for the parameters involved
in the strategy, e.g., the inactivity threshold and the chosen
maximum sleep time. Clearly, there are a number of possi-
bilities to enhance this approach. First, we can enhance the
inactivity threshold strategy by using dynamic parametriza-
tion. Second, we are currently examining more advanced
transition strategies, e.g., based on statistics, to provide us
with better predictions of future device usages. Third, we
already developed a first cooperative transition scheduling
algorithm, which takes into account all services in a clus-
ter when computing sleep times. This algorithm must be
evaluated and analyzed further.

5.2 Service Selection
A major issue in service oriented systems is the selection

of suitable services by clients. From an energy efficiency
point of view, this selection should depend heavily on the
resulting energy usage. Thus, if multiple services are avail-
able, the client should use the one which leads to the most
energy efficient application configuration. However, with-
out system support, the client cannot decide which one is
this. The resulting energy consumption depends on many
factors and cannot predetermined with total certainty. As
some prominent examples, the energy consumption depends
on the amount and frequency of communications between
client and server, the local execution cost of the service on
its device, and the additional consumption if the service uses
additional services to provide its functionality. In addition,
the stability of the resulting configuration must be taken
into account. A service might be highly energy efficient but
is expected to become unavailable in short time, leading to
another application reconfiguration with additional costs.

In the future, we want to provide additional support for
selecting energy-efficient services. To do so, we plan to de-
velop additional algorithms to model and predict the result-
ing energy usage of different configurations. First, we can
use an analytical model to compute an estimated consump-
tion. Second, we can rely on historical data, i.e. measure-
ments taken for past configurations (see, e.g., [6]). In reality,
we expect solutions that combine these two approaches to
provide the best trade off between complexity and energy-
efficiency.

5.3 Session Negotiation Strategies
As described before, sessions allow clients and services to

negotiate energy saving strategies, e.g. by specifying com-



mon synchronization points. Although SANDMAN already
allows such negotiations, additional support to do so would
be beneficial. Most importantly, different strategies must
be developed and analyzed to help application developers to
decide on the best strategy for their code.

5.4 Adaptive Service Discovery
The Consumptions for discovery and usage must be care-

fully weighted against each other. It may be beneficial (at
least from the system’s perspective) to use a slightly worse
service that was discovered with much less effort. Again, the
precondition to follow this approach is the provision of exact
and efficient models to estimate the energy consumption of
a future service usage. Once this information is available,
the system can adapt its discovery efforts depending on the
achievable savings. As an example, if an application uses a
very energy consuming service at the moment, SANDMAN
can increase the frequency and range of discovery requests to
find a better service. On the other hand, if a nearby energy-
efficient service is used, the need for additional discoveries
is low and the middleware can decide to stop searching for
alternative services, until the used one becomes unavailable.

6. RELATED WORK
There are a number of existing energy-efficient middle-

ware systems complementing our approach. The GRACE
project [7] aims at reducing the energy-consumption of mo-
bile devices that process multimedia data. It combines sys-
tem functions like process scheduling, CPU power manage-
ment and data encoding to enable global adaptation. The
MillyWatt project [10] enables battery-powered devices to
run for a predefined period of time. To do so, active devices
are deactivated periodically for a specific fraction of time.
In contrast to this, we deactivate idle devices, only. The
Power Aware Reconfigurable Middleware (PARM) [4] and
the Remote Processing Framework (RPF) [6] enable energy
savings on mobile battery powered devices by shifting en-
ergy intensive tasks to resource rich devices. Our approach
is able to do this by modelling such tasks as services that
can be executed remotely. However, we currently do not
support clients in selecting whether a given service should
be executed locally or remotely. Another approach is taken
by MagnetOS [1]. Through the continuous redistribution of
application parts across the available devices of a mobile ad
hoc network, MagnetOS reduces the communication cost by
reducing the length of data paths.

Regarding energy-efficient service discovery, the DEAP-
Space system enables devices to safely deactivate their com-
munication adapters. To keep devices discoverable, it uses
synchronized time windows to broadcast service announce-
ments in a single hop environment. Our approach is aimed
at multi hop networks and does not require synchronized
devices, enabling optimized interaction latencies.

7. CONCLUSION
In this paper, we have presented our energy-efficient mid-

dleware SANDMAN. SANDMAN is realized as a number of
extensions to BASE, our minimal and adaptive communi-
cation middleware for peer-based pervasive computing envi-
ronments. It supports energy-efficient communication by se-
lecting energy-efficient protocol stacks, and deactivates idle
devices to reduce the idle standby energy consumption. To

do so, SANDMAN clusters devices dynamically depending
on their mobility patterns and neighboring devices. This al-
lows to deactivate devices while preserving the network con-
nectivity and the discovery of the devices and their services.
Work is going on in different directions. Most prominently,
we expect energy efficient service selection to emerge as a
major enhancement to save additional energy. To do so,
the future energy consumption of different application con-
figurations must be predicted, e.g. using suitable analytical
models or historical measurements.
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