
RESH and D-RESH: Fault-tolerant replication
on the basis of modern virtualisation technology

Hans P. Reiser
Franz J. Hauck Rüdiger Kapitza

Distributed Systems Lab,
Faculty of Computer Science

Ulm University
Germany

Department of Distributed Systems
and Operating Systems

University of Erlangen-Nürnberg
Germany

Aspectix Research Group
http://www.aspectix.org/

13 October 2006

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 1 / 21



Roadmap

1 Background: Virtualisation and dependability research

2 Challenges in fault-tolerant systems

3 RESH and D-RESH: Our approaches to hypervisor-based fault tolerance

4 Conclusions

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 2 / 21



Roadmap

1 Background: Virtualisation and dependability research
Current virtualisation technology
System verification using formal methods
Fighting intrusions with virtualisation
Replication on the basis of virtualisation

2 Challenges in fault-tolerant systems

3 RESH and D-RESH: Our approaches to hypervisor-based fault tolerance

4 Conclusions

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 3 / 21



Background: Current virtualisation technology

Recently, virtualisation has re-appeared in operating system research

Integrated into OS: VMware GSX server, User Mode Linux,
FAUMachine

Hypervisor layer below OS: Xen, VMware ESX server

CPU support for virtualisation: Intel Vanderpool, AMD Pacifica

Basic idea: Provide multiple virtual machines, each executing isolated
operating system instances

Benefits not discussed here: optimisation of CPU usage, resource
management, . . .

Our focus: dependability

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 4 / 21



Background: Current virtualisation technology

Recently, virtualisation has re-appeared in operating system research

Integrated into OS: VMware GSX server, User Mode Linux,
FAUMachine

Hypervisor layer below OS: Xen, VMware ESX server

CPU support for virtualisation: Intel Vanderpool, AMD Pacifica

Basic idea: Provide multiple virtual machines, each executing isolated
operating system instances

Benefits not discussed here: optimisation of CPU usage, resource
management, . . .

Our focus: dependability

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 4 / 21



Background: Encapsulation increases reliability

Hypervisor provides isolation between independent virtual machines

Example: LeVasseur et al. (OSDI’04): Improved system
dependability with hypervisor-based encapsulation

Using a small hypervisor and separating the system into isolated small
components reduces code size of components to an amount that can be
handled with today’s verification tools.

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 5 / 21



Background: Encapsulation increases reliability

Hypervisor provides isolation between independent virtual machines

Example: LeVasseur et al. (OSDI’04): Improved system
dependability with hypervisor-based encapsulation

Using a small hypervisor and separating the system into isolated small
components reduces code size of components to an amount that can be
handled with today’s verification tools.

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 5 / 21



Background: Encapsulation enables formal verification

Using virtualisation enables formal verification of individual components:

Verification of low-level microkernels:

Hohmuth et al. (ECOOP-PLOS’05): The VFiasco approach for a
verified operating system memory management of kernel;
Tuch et al. (HOT-OS’05): OS verification – now!

Verification of higher-level components on microkernel
Völp (WDES’06): Verification of L4.Sec system services

Robin Project (http://robin.tudos.org): Small, robust platform that
can undergo formal analysis

Not feasible for full operating system or complex applications! And this
will not change the next 10 years. . .

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 6 / 21



Background: Encapsulation enables formal verification

Using virtualisation enables formal verification of individual components:

Verification of low-level microkernels:

Hohmuth et al. (ECOOP-PLOS’05): The VFiasco approach for a
verified operating system memory management of kernel;
Tuch et al. (HOT-OS’05): OS verification – now!

Verification of higher-level components on microkernel
Völp (WDES’06): Verification of L4.Sec system services

Robin Project (http://robin.tudos.org): Small, robust platform that
can undergo formal analysis

Not feasible for full operating system or complex applications! And this
will not change the next 10 years. . .

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 6 / 21



Background: Fighting intrusions with virtualisation

Several researchers focus on handling intrusions with virtualisation
technology:

Dunlap et al. (OSDI’02): Intrusion analysis through virtual-machine
logging and replay

Garfinkel&Rosenblum (NDSSS’03): Intrusion detection on the basis of
virtual machine introspection

Kiyanclar (CCGRID’06): Survey of virtualisation focusing on secure
on-demand cluster computing

Bad guys can do the same: virtualisation-based viruses etc.

Rutkowska (SyScan’06): Subverting Vista kernel for fun and profit
(“Blue Pill”)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 7 / 21



Background: Fighting intrusions with virtualisation

Several researchers focus on handling intrusions with virtualisation
technology:

Dunlap et al. (OSDI’02): Intrusion analysis through virtual-machine
logging and replay

Garfinkel&Rosenblum (NDSSS’03): Intrusion detection on the basis of
virtual machine introspection

Kiyanclar (CCGRID’06): Survey of virtualisation focusing on secure
on-demand cluster computing

Bad guys can do the same: virtualisation-based viruses etc.

Rutkowska (SyScan’06): Subverting Vista kernel for fun and profit
(“Blue Pill”)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 7 / 21



Motivation: Replication with virtual machines

Hypervisors can also be used for replication:

Bressoud&Schneider (ACM TOCS 14(1), 1996): Hypervisor-based
fault tolerance

Low-level approach, virtual machines are synchronised by the hypervisor on
a per-instruction basis.

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 8 / 21



Roadmap

1 Background: Virtualisation and dependability research

2 Challenges in fault-tolerant systems
Replicating existing applications
The crash-stop illusion
Systematic software faults

3 RESH and D-RESH: Our approaches to hypervisor-based fault tolerance

4 Conclusions

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 9 / 21



Challenges: Replicating existing applications

Reuse of existing applications: transparent replication

Development of new devices/services usually starts without
considering dependability or security

Home PC without any protection + Internet
→ viruses, Trojan horses, spam, . . .
Mobile phones have increased functionality
→ bluetooth attacks, spam calls, . . .

Thus, it is desirable to provide reliability in a transparent way or with
only few modifications to existing applications

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 10 / 21



Challenges: Replicating existing applications

Reuse of existing applications: transparent replication

Development of new devices/services usually starts without
considering dependability or security

Home PC without any protection + Internet
→ viruses, Trojan horses, spam, . . .

Mobile phones have increased functionality
→ bluetooth attacks, spam calls, . . .

Thus, it is desirable to provide reliability in a transparent way or with
only few modifications to existing applications

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 10 / 21



Challenges: Replicating existing applications

Reuse of existing applications: transparent replication

Development of new devices/services usually starts without
considering dependability or security

Home PC without any protection + Internet
→ viruses, Trojan horses, spam, . . .
Mobile phones have increased functionality
→ bluetooth attacks, spam calls, . . .

Thus, it is desirable to provide reliability in a transparent way or with
only few modifications to existing applications

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 10 / 21



Challenges: Replicating existing applications

Reuse of existing applications: transparent replication

Development of new devices/services usually starts without
considering dependability or security

Home PC without any protection + Internet
→ viruses, Trojan horses, spam, . . .
Mobile phones have increased functionality
→ bluetooth attacks, spam calls, . . .

Thus, it is desirable to provide reliability in a transparent way or with
only few modifications to existing applications

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 10 / 21



Challenges: The crash-stop illusion

Most fault-tolerance infrastructures assume crash-stop failures.
Many examples have proven this to be wrong.

Hardware can by arbitrarily faulty

Most systems can be affected by malicious intruders
(in the extremely unlikely case of absence of serious software bugs, there is still the

option of social engineering)

=⇒ increasing research in Byzantine fault-tolerant systems

Software itself can be faulty (thus causing systematic faults)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 11 / 21



Challenges: The crash-stop illusion

Most fault-tolerance infrastructures assume crash-stop failures.
Many examples have proven this to be wrong.

Hardware can by arbitrarily faulty

Most systems can be affected by malicious intruders
(in the extremely unlikely case of absence of serious software bugs, there is still the

option of social engineering)

=⇒ increasing research in Byzantine fault-tolerant systems

Software itself can be faulty (thus causing systematic faults)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 11 / 21



Challenges: The crash-stop illusion

Most fault-tolerance infrastructures assume crash-stop failures.
Many examples have proven this to be wrong.

Hardware can by arbitrarily faulty

Most systems can be affected by malicious intruders
(in the extremely unlikely case of absence of serious software bugs, there is still the

option of social engineering)

=⇒ increasing research in Byzantine fault-tolerant systems

Software itself can be faulty (thus causing systematic faults)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 11 / 21



Challenges: Systematic software faults

N-version-programming: avoiding systematic faults

Systematic software faults will affect all replicas

N version programming helps

N version programming is becoming popular on standard platforms,
reusing existing diverse implementations

Example: Gashi et al. (DSN’04): Fault diversity among
off-the-shelf SQL servers

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 12 / 21



Challenges: Systematic software faults

N-version-programming: avoiding systematic faults

Systematic software faults will affect all replicas

N version programming helps

N version programming is becoming popular on standard platforms,
reusing existing diverse implementations

Example: Gashi et al. (DSN’04): Fault diversity among
off-the-shelf SQL servers

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 12 / 21



Roadmap

1 Background: Virtualisation and dependability research

2 Challenges in fault-tolerant systems

3 RESH and D-RESH: Our approaches to hypervisor-based fault tolerance
RESH: Redundant Execution on a Single Host
D-RESH: Distributed RESH

4 Conclusions

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 13 / 21



Our approach: RESH and D-RESH

RESH: Redundant Execution on a Single Host

Tolerating non-benign random faults on a single host

N-version programming on a single host

Low-level interception for transparent replication

D-RESH: Distributed RESH

Small, trusted, verified “wormhole” for replication support

Two-level replication: intra-host and inter-host

Transparent hand-over on local networks

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 14 / 21



RESH: Basic Assumptions

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware
D

om
ai

n 
N

V

Ph
ys

ic
al

 H
os

t
I/O
Network

Network-based service (TCP or UDP interaction)

A single, locally replicated service per machine
Easily extended for multiple, potentially non-replicated, services as well

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 15 / 21



RESH architecture

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t
I/O
Network

1:

1 Client establishes connection and sends request

2 Domain NV (network+voting) forwards request to application
(replicated in virtual machines)

3 Replicas execute client request and send result

4 Domain NV votes on return stream

5 Domain NV sends reply to client (after majority)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 16 / 21



RESH architecture

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t
I/O
Network

1:

2:

1 Client establishes connection and sends request

2 Domain NV (network+voting) forwards request to application
(replicated in virtual machines)

3 Replicas execute client request and send result

4 Domain NV votes on return stream

5 Domain NV sends reply to client (after majority)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 16 / 21



RESH architecture

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t
I/O
Network

2:

1:

3: 3:3:

1 Client establishes connection and sends request

2 Domain NV (network+voting) forwards request to application
(replicated in virtual machines)

3 Replicas execute client request and send result

4 Domain NV votes on return stream

5 Domain NV sends reply to client (after majority)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 16 / 21



RESH architecture

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t
I/O
Network

1:

3: 3:3:

2: 4:

1 Client establishes connection and sends request

2 Domain NV (network+voting) forwards request to application
(replicated in virtual machines)

3 Replicas execute client request and send result

4 Domain NV votes on return stream

5 Domain NV sends reply to client (after majority)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 16 / 21



RESH architecture

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t
I/O
Network

1:

3: 3:3:

4:2:

5:

1 Client establishes connection and sends request

2 Domain NV (network+voting) forwards request to application
(replicated in virtual machines)

3 Replicas execute client request and send result

4 Domain NV votes on return stream

5 Domain NV sends reply to client (after majority)

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 16 / 21



RESH: Service diversity

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t
I/O
Network

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Service diversity of replicated virtual machines:

OS diversity

Middleware diversity

Application diversity

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 17 / 21



RESH: Domain NV

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t
I/O
Network

D
om

ai
n 

N
V

Hypervisor and Domain NV are a secure trusted computing base

Small components: Formal verification feasible

Tasks of Domain NV:

External communication: network device, TCP/IP stack
Local multicast to application virtual machines
Voting on replies

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 18 / 21



RESH: Domain NV

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t
I/O
Network

D
om

ai
n 

N
V

Hypervisor and Domain NV are a secure trusted computing base

Small components: Formal verification feasible

Tasks of Domain NV:

External communication: network device, TCP/IP stack
Local multicast to application virtual machines
Voting on replies

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 18 / 21



RESH architecture: configuration variants

Dual redundancy:
Detect inconsistency and shut down system
→ guarantees crash-stop behaviour

Triple redundancy:
Voting enables service continuation after failure; recovery of faulty
virtual machine

Extensions for distribution on multiple hosts: D-RESH

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 19 / 21



RESH architecture: configuration variants

Dual redundancy:
Detect inconsistency and shut down system
→ guarantees crash-stop behaviour

Triple redundancy:
Voting enables service continuation after failure; recovery of faulty
virtual machine

Extensions for distribution on multiple hosts: D-RESH

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 19 / 21



D-RESH: Replicating across host boundaries

Use Domain NV for cross-host
replication

Transparent interception of
client requests
Trused “wormhole”: no
malicious intrusion at
Hypervisor/Domain NV

Integration of group
communication

TCP fail-over

Migrate IP address after
failure
Migrate live IP stack
New transport-layer
protocols?

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

I/O
Network

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware
D

om
ai

n 
N

V

Ph
ys

ic
al

 H
os

t

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 20 / 21



D-RESH: Replicating across host boundaries

Use Domain NV for cross-host
replication

Transparent interception of
client requests
Trused “wormhole”: no
malicious intrusion at
Hypervisor/Domain NV

Integration of group
communication

TCP fail-over

Migrate IP address after
failure
Migrate live IP stack
New transport-layer
protocols?

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

I/O
Network

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware
D

om
ai

n 
N

V

Ph
ys

ic
al

 H
os

t

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 20 / 21



D-RESH: Replicating across host boundaries

Use Domain NV for cross-host
replication

Transparent interception of
client requests
Trused “wormhole”: no
malicious intrusion at
Hypervisor/Domain NV

Integration of group
communication

TCP fail-over

Migrate IP address after
failure
Migrate live IP stack
New transport-layer
protocols?

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

I/O
Network

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware
D

om
ai

n 
N

V

Ph
ys

ic
al

 H
os

t

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 20 / 21



D-RESH: Replicating across host boundaries

Use Domain NV for cross-host
replication

Transparent interception of
client requests
Trused “wormhole”: no
malicious intrusion at
Hypervisor/Domain NV

Integration of group
communication

TCP fail-over

Migrate IP address after
failure

Migrate live IP stack
New transport-layer
protocols?

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

I/O
Network

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware
D

om
ai

n 
N

V

Ph
ys

ic
al

 H
os

t

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 20 / 21



D-RESH: Replicating across host boundaries

Use Domain NV for cross-host
replication

Transparent interception of
client requests
Trused “wormhole”: no
malicious intrusion at
Hypervisor/Domain NV

Integration of group
communication

TCP fail-over

Migrate IP address after
failure
Migrate live IP stack

New transport-layer
protocols?

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

I/O
Network

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware
D

om
ai

n 
N

V

Ph
ys

ic
al

 H
os

t

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 20 / 21



D-RESH: Replicating across host boundaries

Use Domain NV for cross-host
replication

Transparent interception of
client requests
Trused “wormhole”: no
malicious intrusion at
Hypervisor/Domain NV

Integration of group
communication

TCP fail-over

Migrate IP address after
failure
Migrate live IP stack
New transport-layer
protocols?

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

I/O
Network

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware

D
om

ai
n 

N
V

Ph
ys

ic
al

 H
os

t

Hypervisor

D
om

ai
n 

0

G
ue

st
 O

S

G
ue

st
 O

S

G
ue

st
 O

S

Hardware
D

om
ai

n 
N

V

Ph
ys

ic
al

 H
os

t

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 20 / 21



Conclusions

Virtualisation provides means for

Formal verifiability (small, isolated components)
Multiple virtual instances on a single machine

RESH: Locally redundant execution using virtualisation

Isolation between redundant executions
Tolerating random non-crash faults
N-version programming
Efficient use of multi-core CPUs

D-RESH: Distributed replication on multiple RESH hosts.

Transparent replication of existing applications
Trusted computing base on all nodes
Integration of group communication into Domain NV
TCP/IP failover

Hans P. Reiser (Ulm University) Aspectix Research Group http://www.aspectix.org/ 21 / 21


	Background: Virtualisation and dependability research
	Current virtualisation technology
	System verification using formal methods
	Fighting intrusions with virtualisation
	Replication on the basis of virtualisation

	Challenges in fault-tolerant systems
	Replicating existing applications
	The crash-stop illusion
	Systematic software faults

	RESH and D-RESH: Our approaches to hypervisor-based fault tolerance
	RESH: Redundant Execution on a Single Host
	D-RESH: Distributed RESH

	Conclusions

