
Virtualisation for Embedded
Real-Time Systems

Robert Kaiser

robert.kaiser@sysgo.com

SYSGO AG

Wiesbaden University of Applied Sciences

Germany

GI Herbsttreffen – October 2006, München – p. 1/26

Overview

Motivation

Existing virtualisation systems

Workload classes

Impact of virtualisation on timing behaviour

Requirements

Approach

Summary/outlook

GI Herbsttreffen – October 2006, München – p. 2/26

Motivation

Increasing performance of embedded systems

⇒ Increasing software complexity

Classical embedded OSes not up to the challenge:

Single address/name space

Single (often proprietary) OS interfaces

⇒ Future embedded systems need:

fault containment

multiple OS interfaces

Virtualisation: successful response in server market

But: current VM implementations not suitable for embedded
systems, especially wrt. real-time issues

GI Herbsttreffen – October 2006, München – p. 3/26

Existing virtualisation systems

Virtualisation: invented in the mid 1960’s by IBM

Current main protagonists: VMware and Xen

Both are clearly not designed for real-time use:

Proportional share assumption

No way to establish a strictly time-driven schedule

No real-time OS interfaces available (Xen)

Xen: possibility to exchange VM scheduler

Current virtual machine implementations are of limited use
for real-time purposes.

GI Herbsttreffen – October 2006, München – p. 4/26

Workload classes

Complex embedded system: must be prepared to handle a
mixture of applications with diverse timing requirements:

Real-time: Must a or should b meet deadlines. Two
subclasses:

Time triggered: static schedule, typically periodic

Event triggered: processes arrive in response to
(unpredictable) events. Assumed to be sporadic

Non-real-time: No need to meet deadlines.
Instead, try to utilise all available resources.

a= ”hard” real-time
b= ”soft” real-time

GI Herbsttreffen – October 2006, München – p. 5/26

Impact on timing behaviour (1)

VM
exec time

VM

VM

VM

VM

real world time

33%

66%
CPU share

1

2

1

2

Idealised behaviour:
proportional share

Reality (uniprocessor):
approximation by
time-slicing

Approximation improves
as time slices are made
smaller

GI Herbsttreffen – October 2006, München – p. 6/26

Impact on timing behaviour (1)

real world time

VM

VM

1

2
active VM

VM
exec time 1

2

Idealised behaviour:
proportional share

Reality (uniprocessor):
approximation by
time-slicing

Approximation improves
as time slices are made
smaller

GI Herbsttreffen – October 2006, München – p. 6/26

Impact on timing behaviour (1)

VM
exec time VM

VM

active VM
2

1

real world time

2

1
Idealised behaviour:
proportional share

Reality (uniprocessor):
approximation by
time-slicing

Approximation improves
as time slices are made
smaller

GI Herbsttreffen – October 2006, München – p. 6/26

Impact on timing behaviour (2)

Estimate impact based on simple example:

(t)
3

2

1

t

vm
σ Tvm

N virtual machines, time slice: Tvm

Each VM experiences a delay
(”blackout”) of:
Tdel = Tvm · (N − 1)

GI Herbsttreffen – October 2006, München – p. 7/26

Impact on timing behaviour (2)

Estimate impact based on simple example:

(t)
3

2

1

t

vm
σ Tvm

(t)
3

2

1

t

vm
σ Tdel

N virtual machines, time slice: Tvm

Each VM experiences a delay
(”blackout”) of:
Tdel = Tvm · (N − 1)

GI Herbsttreffen – October 2006, München – p. 7/26

Impact on timing behaviour (2)

Estimate impact based on simple example:

(t)
3

2

1

t

vm
σ Tvm

(t)
3

2

1

t

vm
σ Tdel

N virtual machines, time slice: Tvm

Each VM experiences a delay
(”blackout”) of:
Tdel = Tvm · (N − 1)

Delay may hit a real-time process running in a VM
at any time.

GI Herbsttreffen – October 2006, München – p. 7/26

Impact on timing behaviour (3)

ta s f d

C Delay may hit a real-time process run-
ning in a VM at any time, e.g:

GI Herbsttreffen – October 2006, München – p. 8/26

Impact on timing behaviour (3)

ta s f d

C

ta s’ f’ d’

delT

C

Delay may hit a real-time process run-
ning in a VM at any time, e.g:

between arrival and start time
affects: response time, jitter and deadline

GI Herbsttreffen – October 2006, München – p. 8/26

Impact on timing behaviour (3)

ta s f d

C

ta s’ f’ d’

delT

C

ta s f’ d’

delT

C’

Delay may hit a real-time process run-
ning in a VM at any time, e.g:

between arrival and start time
affects: response time, jitter and deadline

when process is active
affects: computation time and deadline

GI Herbsttreffen – October 2006, München – p. 8/26

Impact on timing behaviour (3)

ta s f d

C

ta s’ f’ d’

delT

C

ta s f’ d’

delT

C’

Delay may hit a real-time process run-
ning in a VM at any time, e.g:

between arrival and start time
affects: response time, jitter and deadline

when process is active
affects: computation time and deadline

⇒ Delay affects all parameters of a process that are critical
for its real-time performance.

GI Herbsttreffen – October 2006, München – p. 8/26

Impact on timing behaviour (4)

Delay: Tdel = Tvm · (N − 1)

Tvm

vm1

vm2
t

t

swT

To reduce delay: reduce VM time slice
(Tvm) as far as possible

Limit: switching overhead:
Uvm = Tsw

Tvm+Tsw

⇒ Tdel = Tsw·(1−Uvm)·(N−1)
Uvm

I.e. impact depends on:

Worst case context switch time Tsw

(Hardware constant)

Acceptable switching overhead Uvm

(Design decision)

GI Herbsttreffen – October 2006, München – p. 9/26

Impact on timing behaviour (5)

Comparison with non-virtualised system:

Response time/jitter limited directly by switch time: Tsw

Relative impact: Tdel

Tsw

= (1−Uvm)·(N−1)
Uvm

Some realistic numbers:

3 virtual machines

5% overhead accepted

⇒ response time and jitter are roughly 38 times(!) higher.

GI Herbsttreffen – October 2006, München – p. 10/26

Impact on timing behaviour (6)

Impact of virtualisation on real-time performance is
extensive, but bounded.

Real-time programs can in principle work inside virtual
machines, but will show significantly worse real-time
performance (e.g. response time, jitter, computation time).

Reason: assumption of proportionally shared processor.

To achieve better real-time performance:

Abandon proportional share assumption

Adapt VM scheduling to workload classes

GI Herbsttreffen – October 2006, München – p. 11/26

Experiment: Xen (1)

Periodic thread in DomU, Linux in Dom0

0 0 0 1 1ts f

C

a a s

P

Load = C

P

Response = si − ai

Change: Period P

Change: Load percentage

Change: Dom0 (Linux) either
idle or fully loaded

Measure: Response
(min/max/average)

GI Herbsttreffen – October 2006, München – p. 12/26

Experiment: Xen (2)

Dom0 (Linux) idle, Load = 30%.

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200 250

R
es

po
ns

e[
us

]

Period[ms]

Limit
Max
Min

Average

GI Herbsttreffen – October 2006, München – p. 13/26

Experiment: Xen (2)

Dom0 (Linux) idle, Load = 60%.

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200 250

R
es

po
ns

e[
us

]

Period[ms]

Limit
Max
Min

Average

GI Herbsttreffen – October 2006, München – p. 13/26

Experiment: Xen (2)

Dom0 (Linux) busy, Load = 30%.

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200 250

R
es

po
ns

e[
us

]

Period[ms]

Limit
Max
Min

Average

GI Herbsttreffen – October 2006, München – p. 13/26

Experiment: Xen (2)

Dom0 (Linux) busy, Load = 60%.

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200 250

R
es

po
ns

e[
us

]

Period[ms]

Limit
Max
Min

Average

GI Herbsttreffen – October 2006, München – p. 13/26

Experiment: Xen (3)

Conclusions:

Response time (appears to be) bounded
(no proof, just measurements)

Typically: ~10-20 milliseconds
(contemporary RTOSes: ~10-20 microseconds)

Domains are not temporally decoupled
(Strong impact on worst-case response)

GI Herbsttreffen – October 2006, München – p. 14/26

Requirements(1)

Operating systems reflect application requirements.

OS functionalities for different workload classes are (more
or less) orthogonal.

Covering all requirements with a single OS interface is
possible, but not advisable, esp. in a VM environment.

Assumption: each class uses its own OS

⇒ Every class runs in a separate VM

⇒ There are 3 distinct classes of VMs:

1. Real-time, time-triggered

2. Real-time, event-triggered

3. Non-real-time

GI Herbsttreffen – October 2006, München – p. 15/26

Requirements (2): Determinism

Time-triggered VMs:

t

t

t

t

1σ (t)
3
2
1

(t)
2

3
2
1

1
2
3

(t)
3

1
2
3

(t)
vm

σ

σ

σ

Define VM schedule to be a
”super” schedule of all
time-triggered subsystem
schedules.

Only possible if time-triggered
schedules ...

.. do not overlap

.. have the same period

Resulting VM ”super” schedule is strictly a function of time

GI Herbsttreffen – October 2006, München – p. 16/26

Requirements (3): Responsiveness

Event-triggered VMs:

Reserving a time slot for event handling is possible, but may
be too slow.

Need a way for VMs to respond to events immediately, i.e.
preempt the currently running VM.

Contradictive to previous requirement

Safety/security risk

Must allow this only for trusted programs.

Problem cannot be solved in a generic way, so the system
must offer sufficient flexibiltiy to be configurable as needed.

GI Herbsttreffen – October 2006, München – p. 17/26

Requirements (4): Re-allocation

Non-real-time VMs:

Allocation of time to real-time VMs is done according to
worst-case assumptions.

In most cases, real-time VMs will not need all of their
allocated time.

Dynamically re-assign unused time to non-real-time VMs.

Also: Must also be able to avoid starvation.

Non-real-time VMs must share their resources evenly.

GI Herbsttreffen – October 2006, München – p. 18/26

Approach(1)

Basic idea: combine time-driven and priority-based
scheduling:

t

prio

1

2

3

1
2
3

σ vm
(t)

Establish a strictly time-driven
scheduler for time-triggered VMs.

Other VMs compete, based on
priority:

Higher ⇒ can preempt
time-triggered VMs

Lower ⇒ consume time not
used by higher priority VMs

Same ⇒ share time evenly

GI Herbsttreffen – October 2006, München – p. 19/26

Approach(1)

Basic idea: combine time-driven and priority-based
scheduling:

1

4
2

3

t

prio

1
2
3

σ vm
(t)

5

Establish a strictly time-driven
scheduler for time-triggered VMs.

Other VMs compete, based on
priority:

Higher ⇒ can preempt
time-triggered VMs

Lower ⇒ consume time not
used by higher priority VMs

Same ⇒ share time evenly

GI Herbsttreffen – October 2006, München – p. 19/26

Approach(1)

Basic idea: combine time-driven and priority-based
scheduling:

3

4

prio

t

6 7

1

2
5

1
2
3

σ vm
(t)

Establish a strictly time-driven
scheduler for time-triggered VMs.

Other VMs compete, based on
priority:

Higher ⇒ can preempt
time-triggered VMs

Lower ⇒ consume time not
used by higher priority VMs

Same ⇒ share time evenly

GI Herbsttreffen – October 2006, München – p. 19/26

Approach(2)

First implementation: PikeOS microkernel

VMs are represented as groups of processes:

synchronuous: "VM container"

asynchronous: Event/interrupt handlers

Processes are assigned priorities and time domains.

Processes can only execute if their time domain is active,
regardless of priority.

Time domains are represented by arrays of (FIFO) ready
queues, with fixed priority levels.

⇒ Classical, priority-driven FIFO scheduling within each
time domain

GI Herbsttreffen – October 2006, München – p. 20/26

Approach(3)

Similar to ARINC 653 (”partition scheduling”), time domains
are cyclically activated.

Unlike ARINC 653, two time domains can be active at the
same time:

τ0: background domain: always active

τi: foreground domain: one of N − 1 time domains,
cyclically switched

Processes from τ0 and the currently active τi compete by
priority.

GI Herbsttreffen – October 2006, München – p. 21/26

Approach(4)

0

τ1

Ready queues

....
prio

....

....
τ

....

....prio
....

....

prio
....

....

....

N-1

....

Dispatch

τ
switch_domain()

 prio > ?

The microkernel only
implements the mechanism to
switch between domains.

Switching policy is to be
implemented at (trusted)
user level.
⇒ possibility to implement
arbitrary policies

GI Herbsttreffen – October 2006, München – p. 22/26

First results

PikeOS microkernel

Conceptually based on ”L4” (Liedtke 1995)

Currently: Implementations for PowerPC, ia-32 and MIPS

OSes to run inside VMs: Linux, POSIX threads (PSE51),
OSEK OS, ...

Worst case context switch time: Tsw = 25 µs
(PowerPC MPC5200@400 MHz)

⇒ Impact (Tdel) can be as low as 500 µs

GI Herbsttreffen – October 2006, München – p. 23/26

Next steps

Current research

Multiprocessor (Multicore) Support

Separation of time-triggered and event-triggered
systems

Coscheduling of parallel real-time applications

Use Xen as testbed

Distributed Systems

Coscheduling of distributed real-time applications

GI Herbsttreffen – October 2006, München – p. 24/26

Summary

Current virtualisation systems are not designed for real-time
applications.

Impact of virtualisation on real-time performance is severe.

Must adjust VM scheduling to (in part: conflicting) timing
requirements of VMs.

The outlined approach & implementation allows VMs with
different timing requirements to coexist.

Coexistence of time-triggered and event-triggered systems
remains problematic

The outlined approach allows VMs to choose precedence
for either time-triggered or event-triggered processes.

GI Herbsttreffen – October 2006, München – p. 25/26

The End

Thank you for your attention!

GI Herbsttreffen – October 2006, München – p. 26/26

	Overview
	Motivation
	Existing virtualisation systems
	Workload classes
	Impact on timing behaviour (1)
	Impact on timing behaviour (1)
	Impact on timing behaviour (1)

	Impact on timing behaviour (2)
	Impact on timing behaviour (2)
	Impact on timing behaviour (2)

	Impact on timing behaviour (3)
	Impact on timing behaviour (3)
	Impact on timing behaviour (3)
	Impact on timing behaviour (3)

	Impact on timing behaviour (4)
	Impact on timing behaviour (5)
	Impact on timing behaviour (6)
	Experiment: Xen (1)
	Experiment: Xen (2)
	Experiment: Xen (2)
	Experiment: Xen (2)
	Experiment: Xen (2)

	Experiment: Xen (3)
	Requirements(1)
	Requirements (2):
Determinism
	Requirements (3):
Responsiveness
	Requirements (4):
Re-allocation
	Approach(1)
	Approach(1)
	Approach(1)

	Approach(2)
	Approach(3)
	Approach(4)
	First results
	Next steps
	Summary
	The End

