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Abstract. Group communication is an essential building block for the
development of fault-tolerant distributed applications. This paper pre-
sents a reconfigurable totally-ordered group communication system based
on distributed consensus algorithms. Our novel design uses a policy-based
mechanism for dynamical reconfiguration of the system at runtime with-
out service interruption. Reconfigurations may optimize for most efficient
“best-case” operation or for minimal delays in failure situations, may se-
lect different failure models like crash-stop, crash-recovery, or Byzantine,
and may adjust internal parameters like timeout values for failure detec-
tion. Internally, our modular group-communication system is composed
of a low-level transport, the group management, and an instance of a
distributed consensus algorithm. Performance measurements of our Java
implementation illustrate the practical feasibility of our approach.

1 Introduction

Fault tolerance is an essential challenge in the development of distributed sys-
tems. The inherent complexity of the development of fault-tolerant systems de-
mands the support by a middleware infrastructure. Group communication is
one essential building block for the development of such an infrastructure. Tra-
ditionally, such systems were often built with focus on rather static systems.
The advantage of such static settings is that accurate prediction and analysis
is feasible, making them the ideal choice for critical applications with strict de-
pendability requirements.

Today, an increasing number of computing systems are distributed, and an
increasing portion of daily life is affected by such systems. Even simple ap-
plications (e.g., some Internet-based web service) are faced with fault-tolerance
requirements. This has an important impact on the design of a fault-tolerance in-
frastructure: On the one hand, every application may have different requirements
regarding fault-tolerance properties, security, responsiveness (reaction time and
throughput), and so on. On the other hand, the environment may vary sig-
nificantly regarding properties like the failure model (e.g., crash-stop, crash-
recovery, and Byzantine), timing or synchrony aspects, or available communica-
tion means (e.g., 1 Gbit/s LAN vs. 19.2 kbit/s GSM mobile).



For the construction of a fault-tolerance infrastructure, this has two impor-
tant impacts: First, best service quality will be obtained if the infrastructure
allows application- and environment-specific tailoring depending on the require-
ments of the application and the properties of the environments. Second, the
infrastructure needs to support flexible run-time adaptation, as both the needs
of the application and the environment may change dynamically at runtime.

Let us, for example, consider the failure model: A crash-stop model, where
processes either function correctly or have failed permanently, has the advantage
of least complexity and minimal overhead, so it might have initially been chosen
for some system. However, a crashed node can not simply recover and continue
operation in this configuration.

Because of this disadvantage, the failure model might be adjusted to crash-
recovery at some point. Typically, this requires some stable storage to keep criti-
cal state across crashes. Thus, it slightly increases the overhead of all operations,
but nodes can seamlessly continue operation after recovery.

Finally, our distributed application might be confronted with changed secu-
rity considerations that lead to the demand of intrusion tolerance. Such demand
is satisfied by reconfiguring the system to support a Byzantine failure model,
which allows to tolerate even malicious intrusions (as long as the number of
faulty nodes is not too high, typically less than one third of all nodes).

In order to support such adaptive fault tolerance in our AspectIX middleware
system [17], we were faced with the need of an adequate support for tailoring
and run-time adaptation at the group-communication level. Existing systems for
group communication could not meet our requirements regarding these issues. If
run-time adaptation is supported in existing systems at all, it is typically limited
to changing group membership or, in some cases, dynamically adjusting timing
parameters of failure detector modules.

Our AspectIX group communication system (AGC) uses an encapsulated
consensus module to obtain total order. This generic module allows many possi-
ble specializations and thus provides an ideal basis for application-specific tailor-
ing. These specializations include the classic Paxos algorithm [13] and variants
for low latency as well as for crash-stop, crash-recovery, and Byzantine failure
models. As our system supports complete dynamic reconfiguration, it meets the
requirement of flexible run-time adaptation.

This paper is structured as follows. Section 2 discusses related work on con-
sensus algorithms and group communication. Section 3 presents the general ar-
chitecture of our system. Section 4 describes our generic consensus implemen-
tation and its specializations. Section 5 discusses the implications of run-time
reconfiguration in detail and Section 6 shows run-time measurements, which
illustrate the performance of our Java implementation. Finally, Section 7 con-
cludes.



2 Related Work

2.1 Distributed Consensus

In an asynchronous distributed system, deterministic consensus is impossible if
at least one node fails; this fact is well-known as FLP impossibility [9]. Unfortu-
nately, most distributed systems (e.g., those that use today’s Internet as commu-
nication infrastructure) cannot count on synchrony. Consequently, all practical
algorithms must be built on some partially synchronous model that is strong
enough to avoid the FLP impossibility, but that is also weak enough to have
realistic assumptions on the basic communication system.

Distributed consensus in systems without synchrony was probably first ad-
dressed by Lamport with the Paxos algorithm [13]. Subsequently, several authors
provided further work on Paxos [2, 16], describing variants for crash-stop as well
as for crash-recovery without stable storage. The idea of Brasileiro et al. [3] may
also be applied to Paxos to obtain a fast (i.e., low-latency) variant. Castro pre-
sented variants of a practical consensus algorithm for the Byzantine failure model
[6]. Due to structural similarities with the Paxos algorithm for the crash-recovery
model, this algorithm is also referred to as “Byzantine Paxos”.

Other authors have used different approaches to distributed consensus. Chan-
dra & Toueg [7] introduced the idea of unreliable failure detectors to encapsu-
late the additional assumptions that are necessary to solve consensus in asyn-
chronous systems. This allows using the same consensus algorithm with different,
environment-specific implementations of the failure detector. The ABBA algo-
rithm [4] works in a completely asynchronous system with Byzantine failures
using randomization. However, these works do not focus on issues related to
tailoring and reconfiguring service properties.

A few works are closely related to ours regarding the generalization of con-
sensus for offering configurable variants with a generic interface. The General
Agreement Framework (GAF) [11] bases on the algorithm of Chandra & Toueg
and allows parameterization at instantiation time. It mainly allows to select
predicates for considering nodes crashed or alive, for judging proposed values
as acceptable, and for allowing early decisions. The Generic Consensus Service
(GCS) [10] of Guerraoui and Schiper aims at providing a reusable service that
allows solving various problems, including atomic commit, group membership,
and group communication. DisCusS [5], a distributed consensus service, is based
on self-adapting failure detectors, which allow optimizing the performance of
consensus by reducing false suspicions of the failure detector. Some existing
work addresses the question of adaption at the failure detectors level. Bertier
et al. [1] analyze the effect on service quality that dynamically adjusting the
frequency of periodic alive-messages and the timeout period achieves based on
system monitoring.

However, all these systems use a fixed crash-stop (or crash-recovery) model
and limit run-time adaptation to changing timing parameters. In contrast, our
work addresses a broader scope of configurability: First, reconfiguration may
affect the system model (including a Byzantine failure model), various struc-



tural variants for different optimization goals, and timing parameters. Second,
all configuration may also be dynamically adjusted at run-time.

2.2 Group Communication

Group communication, or total-order multicast, has been addressed by many
researches for more than two decades, as it is without doubt an essential mecha-
nism for constructing reliable distributed systems. The survey of Défago, Schiper,
and Urbén [8] gives an extensive overview about around 60 known group-com-
munication systems.

One approach to total-order group communication, first proposed by Chan-
dra & Toueg [7], is to transform this problem into the consensus problem. Several
practical group communication systems use such approach and apply a modular-
ization that builds upon some kind of consensus module. Mostefaoui and Raynal
[15] describe a optimization that restricts the use of the consensus algorithm to
situations where asynchrony and crashes prevent nodes from obtaining a simple
agreement on message order. Eden [12] is a group communication system based
on the above-mentioned Generic Agreement Framework [11]. Unfortunately, no
performance characteristics or further details have been published. Larrea et
al. [14] also used the Chandra & Toueg algorithm to implement totally-ordered
broadcast and evaluated the resulting performance. Rodrigues and Raynal [18]
apply the Chandra & Toueg transformation—which assumes a crash-stop failure
model— to the crash-recovery model.

All described systems, however, have a slightly different focus than our sys-
tem, as we place emphasis on a broader scope for configuration (e.g., crash-stop,
crash-recovery, and Byzantine failure model) and on integrated support for flex-
ible run-time reconfiguration.

3 Design of the Consensus-Based Reconfigurable Group
Communication System

3.1 Overview

The group communication system has a modular design as shown in Figure 1.
The core component of any communication group is Group. It implements the
interface that is visible to the client. This interface offers methods to send and
receive group messages, as well as to configure the group by adjusting group
membership or group policies.

The Consensus component is used to obtain a total order of all group mes-
sages. A variety of implementations are available, each with different quality-of-
service properties.

Both components use an instance of ComSys. ComSys encapsulates the low-
level communication between all participating nodes. For this purpose, it offers
unidirectional one-to-one and one-to-many communication, as well as network-
independent addressing of nodes.
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Fig. 1. Modular Structure of the AspectIX Group Communication System (AGC)

The configuration of all three main components is described by a GroupPolicy.
This policy is defined at group creation time and may later be changed by the
dynamic reconfiguration process.

3.2 ComSys: The Low-Level Communication System

The ComSys component has to fulfil a set of tasks: It represents an abstrac-
tion that encapsulates the specific mechanisms used for communication (e.g.,
TCP, TLS, SOAP/HTTP). It handles failures by queueing messages and re-
establishing connections after failures. It supports a crash-recovery model by
providing network-independent addressing, as a recovered node may, e.g., use
a different dynamically assigned IP address or a different TCP port number.
Finally, it offers a fully asynchronous (non-blocking) sending primitive to the
other components. The internal structure of ComSys is outlined in Figure 2. The
design supports multi-threaded use by the client, i.e., multiple client threads
may simultaneously send or receive messages.

All internal sub-components of Group and Consensus share the same ComSys
instance. Each message is tagged with a message type to allow a direct deliv-
ery to the appropriate entity. Each entity that accesses ComSys may obtain a
ComIdAdapter object and may register a MessageListener. The ComIdAdapter
automatically tags all outgoing messages with a specific message type. All in-
coming messages of a specific type are forwarded to the corresponding set of
MessageListener instances.
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Fig. 2. Internal Structure of the Low-Level ComSys

Group
Group(com: ComSys, policy: GroupPolicy)

join(group: GrouplD)
leave(node: NodelD)
changePolicy(policy: GroupPolicy)

sendMsg(msg: Message)
sendMsgDirect(msg: Message, dest: NodelD)
receiveMsg(): Message

Fig. 3. Interface of the Group component

At the bottom end, ComSys internally uses two active threads: Outgoing mes-
sages are handled by the ConnectionHandler. It queues messages, sends mes-
sages to available destinations, and handles re-establishment of low-level connec-
tions after failures. The ConnectionListener is responsible for all in-going con-
nections and forwards all received messages to the appropriate MessageListener.

The group policy allows configuring the ComSys. Besides the low-level chan-
nel type (currently TCP or TLS; extensions for, e.g., SOAP/HTML are easily
added), it allows configuring type-specific parameters like whether to use avail-
able hardware multi-cast mechanisms or timing parameters for re-establishing
low-level connections.

3.3 Group: The Core Component

Group is the principal module of any instance of the group communication sys-
tem. It provides the upper-level interface for the application (see Figure 3).
Methods are provided for sending and receiving group messages as well as for
configuring the system. In our group model, we distinguish three classes of nodes:



— Core group members are responsible for determining total order; they auto-
matically learn all group messages.

— FEaxternal listeners do not participate in an ordering protocol; nevertheless,
they may learn all group messages in the globally consistent order.

— FEaxternal senders may send messages to the group without being part of
the core group; they may also receive replies from the group in reaction to
requests sent to the group via the group communication interface.

In our terminology, we use the term group to refer to the core group exclusively.
External listeners and external senders are referred to as external nodes that
interact with the group. Traditionally, many group communication systems use
a closed-group model, where only group members may send group messages. We
get such a closed-group model if we restrict all nodes to be core group members.
Without this restriction, we support the more flexible open-group model [§],
where interaction between external nodes and the core group is supported. The
group policy defines which nodes are allowed to interact with a group.

For (re-)configuring the group, three methods are provided in the Group
interface:

— join(group: GroupID) may be used for joining a given group group. A
new group member first instantiates a ComSys and Group component. The
join operation tries to send a join request as an external node to one of the
group members. As soon as the client receives a positive reply, it instanti-
ates a properly configured Consensus component. The policy to be used is
contained in the reply from the group.

— leave(node: NodeID) requests that the given node is removed from the
group. It is both possible that some node requests its own removal and that
it requests the removal of another (e.g., permanently crashed) node.

— changePolicy(policy: GroupPolicy) is available for all other reconfigu-
ration actions. All policy changes are subject to the group’s agreement and
are total-order delivered to all group members.

It is necessary to distinguish soft and hard reconfiguration requests. All re-
quests are passed to the group via the group’s total-order protocol. A soft policy
change may simply be applied to all internal components of the group com-
munication system at some node, as soon as the new policy is received. Such
changes may, for example, affect timing parameters of a failure detector. A hard
policy change needs additional coordination to ensure a safe transition to the
new configuration. One example for this case is the complete replacement of the
Consensus module.

A policy may further restrict acceptable operations by imposing limitations
on valid policies, permitted senders, etc. If a operation is not accepted, consen-
sus will decide the rejection of that operation. More details of the policy-based
reconfiguration process will be discussed in Section 5.

The internal behavior of Group differs between external nodes and core group
members. A core group member has a Consensus component, and Group basi-
cally passes all application requests (messages to be sent as well as all kind of
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init(com: ComSys, nodes: NodelD[], policy: GroupPolicy
destroy()

propose(proposal: Proposal)
getValue(): ProposalReply

Fig. 4. Interface of the Consensus component

reconfigurations) as consensus proposals directly to its Consensus module. An
external node has no Consensus module. Instead, it forwards all client requests
as simple direct messages to a core group node. This group node then propagates
this request to the group.

Another group policy influences the behavior of an external node. With the
default send-to-one policy, such a node sends its request to one of the group
members; if available, a primary or “leader” node is selected as recipient. For
low-latency consensus algorithms based on the idea of “consensus in one com-
munication step” [3], all nodes participating in the consensus protocol need to
know the initial value. Thus, the sender has to broadcast its message to the
whole group, which is specified with a send-to-all policy. A third policy, send-to-
one-retry-all first sends the message to one group node. If the message reception
is not acknowledged by the group within a specified time, it is re-sent to the
whole group. This procedure may, e.g., be used with Castro’s algorithm [6] for
Byzantine failures. It is an optimistic approach that uses a minimal number of
messages in the good case (the selected contact node is not faulty). If it is faulty,
re-sending the message to all nodes ensures that it will eventually be delivered
to all.

3.4 Consensus: Using Consensus for Total Order

It is the task of a total-order protocol to define an order on all messages sent to
the group. In our system, a fault-tolerant consensus algorithm is used to define
this order. Basically, this means that each message to be delivered is subject to
a consensus decision.

The generic interface to Consensus is shown in Figure 4. It is only used by
Group and not directly visible to the application. The propose operation passes
a proposal as input for a consensus instance. The getValue method blocks until
the next consensus instance reaches a decision and returns the decision result.
Two additional methods are provided for initialization and clean shutdown. The
semantics of the operations are defined as follows: The propose method has
to guarantee that the proposal is eventually decided upon by the consensus
instance, as long as the node that initiated that proposal does not fail. The



getValue method returns values that have been decided in a globally defined
order.

Using one consensus decision for each group message is a bottleneck. There-
fore, a batching mechanism may be used: The group collects all messages sent
to the group during some (short) period of time. One consensus decision defines
the order of all such messages. This significantly reduces the overhead caused by
the consensus algorithm; it however increases the latency slightly by the interval
in which the system waits to collect messages. The run-time measurements in
Section 6 illustrate the effect of such a batching mechanism. In the next section,
we will focus on details of the consensus implementation.

4 Generic Paxos-Based Consensus

The consensus component of our group communication system is designed to
be generic. Any agreement implementation that provides the above interface
(as described in Section 3.4, Figure 4) can be used. Our current prototype im-
plements a generic model for several variants of the Paxos algorithm. These
variants include the classic Paxos using stable storage for crash-recovery [13],
variants for crash-stop and crash-recovery without stable storage [2], and for
Byzantine failures [6]. Specializations allow to optimize for low latency or for
minimal communication costs.

For group communication, multiple instances of consensus, numbered con-
secutively by instance numbers®, are necessary; each instance corresponds to
deciding the delivery of one message or one batch of messages.

Multiple consensus attempts may be executed for one consensus instance. We
refer to these attempts as rounds?. A total order exists on all round numbers.
The Paxos algorithm ensures that a decision in round i is never inconsistent with
a previous decision of the same consensus instance in some round j < .

4.1 Classic Paxos

The Paxos algorithm works in three phases. Each instance for a single deci-
sion may be considered as a 3-phase commit protocol, where the value to be
committed is not yet known in the first phase. Instead, Phase 1 collects infor-
mation about values that have potentially been committed in previous rounds.
Phase 2 sends a proposal to the group. This is either the value learned in the
first phase (which ensures consistency with previous consensus attempts), or,
if no such value exists, an externally provided value. If sufficiently many nodes
acknowledge the reception of the proposal, it may be committed in Phase 3.

3 Unfortunately, authors writing about Paxos tend to use differing terminology. The
term instance numbers is consistent with De Prisco; they are called decrees in Lam-
port’s original work. In Castro’s algorithm, they correspond to sequence numbers.

4 The term round number is again consistent with De Prisco. Lamport refers to these
rounds as ballots; Castro uses the term view.
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Fig. 5. Speed Variants of the Generic Paxos Implementation

Typically, the first phase is only executed when starting a new consensus
attempt, e.g., after a leader change. As a further optimization, the first phase
may be executed jointly for all instances: The leader sends a collect query to all
others, indicating the lowest instance number whose decision result it does not
know. If this request does not have the highest round number, it will be rejected.
Otherwise, all nodes reply with a last message containing a list of all proposals
or decisions known to them in higher-numbered instances.

Classic Paxos, as described by Lamport in [13], has a typical message ex-
change pattern as shown in Figure ba. After the first phase, it requires three
message delays for each consensus decision (Propose, Acknowledgement, Com-
mit). Embedded in the group communication system, usually one additional
message delay arises from the necessity to send the proposal to the leader node.
Such a proposal may be sent either from a non-leader node participating in the
consensus, or, as shown in Figure 5, from an external node.

4.2 Paxos Speed Variants

The interaction patterns of non-Byzantine speed variants are shown in Fig-
ure 5b,c (Phase 1 is omitted, as it is identical in all variants). In the Fast
Paxos variant (b), the acknowledgement and commit messages are joined by
broadcasting the acknowledgement to all group nodes, which in turn may de-
cide autonomously if sufficient acknowledgements have been sent. This variant
essentially improves latency at the cost of an increased number of messages to
be sent.

The Ultra Fast Paxos variant (c) uses the idea of one-communication-step
consensus [3]. It is assumed that all group nodes have the same initial value
(which requires a proposal to be broadcast to all nodes instead of sending it only
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to the leader). If all nodes receive identical acknowledgments, they may commit
immediately. If not—which is easily the case when several clients try the propose
values concurrently—a conflict is detected, and the algorithm reverts to classic
Paxos. Consequently, this variant improves latency even further in an optimistic
case. Furthermore, the crash of the designated leader has no negative influence
on consensus (while in the other variants, a required leader change adds an
additional delay); These improvements come at the cost of worse performance
when concurrent access occurs.

4.3 Handling Crash-Recovery Failures

In a crash-stop system model, all variants may be implemented in a straight-
forward way, as all nodes either function correctly or crash permanently. In a
crash-recovery model, a correct node may temporarily crash and subsequently
recover again, continuing to participate in the consensus protocol.

To make this continuation possible without provoking inconsistencies, signif-
icant state information must not be lost in a crash-recovery step. For example,
in Phase 1 of the Paxos algorithm, each node has to send information about any
value previously accepted by an acknowledgement, even if this acknowledgment
precedes a crash-recovery cycle; thus, prior to sending such a acknowledgement,
the received proposal needs to be written to some kind of stable storage.

A crash-recovery model is supported in all Paxos variants by using such a
stable storage. This stable storage may, for example, be implemented using flash
memory, a hard disk, or redundant hard disks, depending on available hardware
and on the kind of physical faults to be tolerated. The implementation has
to make sure, that a crash during write operations to stable storage does not
lead to an inconsistent state. Our prototype implementation uses a hard disk to
store state. After recovery, the internal state of the consensus algorithm can be
recovered from stable storage.

4.4 Handling Byzantine Failures

The basic structure of Paxos is also present in Castro’s agreement algorithm
[6] for Byzantine failures. Its interaction pattern requires three communication
steps normal-case operation (i.e., in the second and third phase). Our implemen-
tation currently only supports the public-key based approach. Castro’s variant
without public-key cryptography in normal operation would allow to increase to
performance, especially with a small number of participating nodes.

4.5 Parallel Execution of Consensus

Using consensus for group communication, a sequence of consensus instances
is executed, each labeled uniquely by a continuous instance number. As these
instances are generally independent from each other (we will discuss restrictions
in this issue in the next section), they can be executed in parallel.
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ComSys:Type hard TCP/IP-Communication
ComSys:Reconnect soft 60s

ComSys:Encryption hard no

ComSys:Multicast soft no

Consensus:Type hard PaxosAgreement
Consensus:Mode hard StableStorageRecovery
Consensus: Timeout soft 10s
Consensus:Parallellnstances soft 5

Group:BatchDelay soft 100ms

Fig. 6. Policies for Configuring the Group Communication System

There is a some benefit from such parallelism, as the delay between successive
decisions is substantially reduced. Furthermore, such a parallelism allows to join
messages at low-level communication; e.g. a Propose message of one consensus
instance can be transitted in combination with a Commit message of the previous
instance. We will discuss the practical impact in Section 6.

4.6 Generic Implementation

The structural similarity of all described variants allows a generic implementa-
tion strategy, which is less error-prone and simpler than implementing a consen-
sus module for each variant from scratch. Our prototype uses an abstract base
class that encapsulates the general Paxos logic (processing the three phases for
each instance, handling leader changes, etc.). Specializations add all elements
that are unique to either the crash-failure or the Byzantine-failure variant. Sta-
ble storage or fast and ultra-fast configurations only require minimal additional
logic in the implementation.

5 Policy-based Reconfiguration

5.1 Overview

The complete configuration of our group communication system is controlled by
the group policy. This policy is represented by a key/value-map; Figure 6 shows
typical values. All members of a group have the same policy, which is initially
defined at group creation time. A joining node is automatically informed about
the currently valid policy. This section discusses how various policy elements can
be reconfigured dynamically at runtime, and what support is therefore needed
in the implementations of Group and Consensus.

5.2 Performing Consistent Reconfiguration

All reconfigurations need to be performed consistently by the whole group. For
this purpose, each reconfiguration is sent to the group as consensus proposal.
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The consensus decision not only defines the new policy to be adopted, but also
determines exactly at which instance number this change is to be made.

Most policy changes, which we classify as “soft”, may simply be applied to
all components as soon as they are decided by the group. This kind of policy
change is fully transparent to the application using the group communication
system. The only run-time cost is, that one consensus instance needs to be
executed to decide the new policy. This decision can be bundled with decisions
on application messages, with the same bundling mechanism as described in
Section 3.4. Thus, the cost for such reconfigurations is basically reduced to the
mere effort of sending the policy to all group nodes.

5.3 Handling “Late” Nodes

Due to the asynchrony of the system model and the ability to tolerate faults
(i.e., to decide the order of message delivery without the participation of all
group nodes), some nodes might already have finished executing the consensus
instance 7 (and maybe even subsequent instances i’ > i), while others have not.
This is particularly a problem for reconfigurations like exchanging the consensus
instance. Delaying the reconfiguration until all group nodes have finished the
concerned consensus instances is not a viable option, as this will severely hinder
reconfiguration if just one node is unavailable.

Two solutions are possible: Either old consensus instances have to be kept
active until all group nodes know the decision value, or successful decision results
have to be managed by a component that is always available in the system. In
our system, we use the second option, as it simplifies internal management and
consumes less resources. As soon as consensus is reached in one instance, the
result is managed by the Group, and the consensus instance may be discarded.
If a node lacks one decision result of one instance number and the corresponding
consensus instance is no longer available, Group responds directly with an up-
date message containing the final decision result. Furthermore, Group contains
a garbage collection mechanism: Decision results are kept in a decision log only
until each group node either has acknowledged the reception of that decision or
has crashed permanently.

5.4 Reconfigurations and Parallel Instances

Section 4.5 explained, that multiple consensus instances may be executed in
parallel, as they are independent of each other. This strategy contributes sig-
nificantly to the system performance. However, the possibility of dynamic re-
configurations has an important impact on such a parallelism:. Suppose that a
reconfiguration gets decided in consensus instance ¢. If this reconfiguration is
supposed to influence instance i + 1 (e.g., select which algorithm to use), we
must not start instance ¢ + 1 until 7 is decided. Consequently, no parallelism is
possible.

The solution to this problem is to limit the parallelism and delay the validity
of reconfigurations. In this scheme, a reconfiguration decision in instance i gets

13



valid only for consensus instances with a number greater than or equal to i+ IV,
with N being a constant defined by a policy. This way, up to N consensus in-
stances can be executed simultaneously. In practice, it is not essential to execute
an infinite amount of parallel rounds; just a small number is needed. The draw-
back is, that a reconfiguration is delayed for N consensus executions. This may
result in a long delay if no application messages are sent. To avoid this problem,
a sequence of N no-operation proposals can be proposed to the group. This sort
of strategy has also briefly been mentioned by Lamport in [13].

5.5 Handling Hard Reconfigurations

In contrast to soft reconfigurations, which are handled as described in Sec-
tion 5.2, a hard reconfiguration is one that leads to an incompatible system
modification. This is the case for modifications of the consensus module (re-
placing the algorithm) or of the ComSys (e.g., switching from plain TCP to SSL
encryption).

The group module performs a clean change-over at a determined instance
number 4. It waits for completion of all instances less than 4, initializes the
new module implementation, transfers all relevant state information of the old
implementation, and finally activates the new module.

5.6 Membership Changes

Membership changes by join or leave operations may be considered as soft or as
hard. Treating them as soft, it is essential that the consensus implementation is
able to handle membership changes internally. Treating them as hard removes
this requirement, but increases the cost of the reconfiguration. Unfortunately,
some consensus implementations do not support such a internal reconfiguration;
for example, the view-change mechanisms of Castro’s algorithm assumes a static
number of nodes. In such a case, a hard reconfiguration is performed by replacing
Consensus with a new instance having the same type, but a different node set.
On the other hand, node set changes can easily be integrated, e.g., in a imple-
mentation of classic Paxos. In cases like this, a soft reconfiguration strategy is
to be preferred. Our implementation supports both variants to obtain best effi-
ciency for hard reconfiguration steps without limiting possible implementations
of the consensus module.

6 Validation

We have carried out several test to evaluate to performance of our consensus-
based group communication system. All test have been done on GHz Intel Pen-
tium 4 (3.0 GHz) workstations running Linux (kernel 2.4.30), connected via a
100-BaseT network.

The most important factor in system performance of a consensus-based group
communication system is the cost for a consensus decision. Figure 7 shows the

14



250 T T T

r G—© Classic Paxos (Crash-Stop) 1

G- Classic Paxos (Recovery/Stable Storage)
Fast Paxos (Crash-Stop)

L A=A Fast Paxos (Recovery/Stable Storage) |

*x—= Byzantine Paxos (Public Key)

18]
S
S
T
|

—

93

(=)
T

—_

(=3

S
I

Consensus operations per second
.

50 _
0 | | | | | | |
0 2 4 6 8 10 12 14 16
Number of nodes
Fig. 7. Consensus Operations per Second
200 : :
180 ; G~© no parallelism ;
k=) -8 3 parallel decisions
= I .. 4
S 5 parallel decisions
g 160 *—x 10 parallel decisions | |
5 J
8,
2 140 — —
.8 + |
=
3120~ |
=9
© r 4
3
§ 100 j i
Z
S soF _
60— -
| | | | | | |
0 2 4 6 8 10 12 14 16

Numer of nodes

Fig. 8. Effect of Parallelism on Classic Paxos (Crash-Stop)

number of consensus decisions per second that our system achieves in relation to
the number of core group nodes, for various consensus instances. The recovery
variants use synchronous writes to the local disk as stable storage; the parallelism
of consensus decision was limited to five parallel instances.

For all variants, the system scales well with an increasing number of nodes.
The limiting factor in the stable-storage variants are the synchronous write oper-
ations; thus there is only little difference between Classic Paxos and Fast Paxos
in these cases. The Byzantine consensus instance is, as it might be expected, the
most costly variant. OQur current prototype uses public-key based signatures; we
do not yet support the more efficient variant of Castro [6] based on symmetric
message authenticators.
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Parallelism of consensus operations, as explained in Section 4.5, makes recon-
figuration a slightly more complicated task. Therefore, we examined in another
experiment the benefit of such parallelism. Figure 8 shows the number of consen-
sus decisions per second for different degrees of parallelism. For a small number
of nodes (less than nine), such parallelism increases the performance. Somewhat
unexpected, the performance decreases at a higher number of nodes, which is
probably due to the overhead of internal synchronization. The results thus also
show that a dynamic configuration of the parallelism depending on the number
of nodes is necessary to get optimal performance. Hardly any difference exists
between five and ten parallel rounds, which coincides with the exception that a
small number of parallel rounds is always sufficient.

From the application point of view, an essential parameter is the message
latency. Figure 9 shows the latency for three different consensus variants, de-
pending on the core group size. All times are per-message latencies averaged
over 100 messages sent to group, measured at the application-level group inter-
face.

7 Summary and Future Work

We have presented a group communication system based on fault-tolerant con-
sensus algorithms. Our system makes two main scientific contributions: First,
it allows to be tailored to application-specific and environment-specific require-
ments. The broad range of these customizations includes, among others, the
failure model (crash-stop, crash-recovery, and Byzantine), low-level communica-
tion mechanisms, and timing properties. Second, it efficiently supports run-time
reconfiguration of all such customizations without service interruption.
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The design of our group communication system, composed of the Group,
a ComSys, a Consensus, and a GroupPolicy instance was presented in detail.
The consensus instance encapsulates arbitrary consensus algorithms; our cur-
rent implementations uses variants of the Paxos algorithm. We have given an
detailed overview of these variants, which support several failure models and
parameterizations to optimize latency and message overhead. The policy-based
configuration mechanisms allows run-time reconfiguration transparent to the ap-
plication and with negligible overhead. A practical performance analysis of our
implementation evaluated our system design. We have analyzed the throughput
and latency characteristics of different configurations to illustrate the feasibility
of our approach.

Our current prototype has not yet been optimized, so we still anticipate fur-
ther improvements of the presented measurements. Adding additional variants
of the agreement component, like Byzantine consensus based on symmetric mes-
sage authenticators or the ABBA algorithm, is being considered. On a broader
scope, we currently work on a middleware integration of our system; we target,
first, at a integration into the FT-CORBA implementation GroupPac for ac-
tive replication; second, we will use the system in our dynamically configurable
AspectIX middleware.
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