Message reliability and caching for publish/subscribe
systems

Andreas Tanner, Gero Mihl

Technische Universitat Berlin
Einsteinufer 17, 10587 Berlin, Germany
{tanner,gmuehl}@ivs.tu-berlin.de

March 5, 2004

Publish /subscribe
Message completeness
Temporal logic

Safety and Liveness
Axioms for p/s systems
Distributed Implementaion

Rebeca

Publish /Subscribe

» Enables loosely coupled communication using notifications.

» Two kinds of “clients”

» Producers publish notifications

» Consumers subscribe to notifications
» Notification service

» Decouples producers from consumers
» Delivers a published notification to all consumers with a
matching subscription

Interface

Clients

sub(F)
unsub(F)
Interaction pub(n)

notify(n)

Publish/Subscribe
System

Basic Definitions and Assumptions

» A filter F is a mapping from the set of notifications N to the
boolean values true and false.

» A notification n matches a filter F iff F(n) = true.

> Set of notifications matched by a filter F and by a set of
filters A is denoted by N(F) and N(A), respectively.

» Notifications are unique and can be published only once.

Black box view of a publish/subscribe system

» Describes the system behavior by solely looking at its

interface.

Clients

sub(F)
unsub(F)
pub(n)

notify(n)

Interaction

Publish/Subscribe
System

» Interface Operations (set of all actions A)

sub(Y, F) Client Y subscribes to filter F
unsub(Y, F) | Client Y unsubscribes to filter F
ack(Y,F) System notifies client Y about

message completeness guarantee

notify(Y, n)

System notifies client Y notified about n

pub(X, n)

Client X publishes n

Multicast

» publish/subscribe is special type of multicast
» event-based
» dynamically created groups

» problems classically considered for multicast:

» message completeness
> message order
> etc.

Message completeness

How can message completeness be defined in a publish/subscribe
system?

> first try: once a client subscribes to a filter, he gets all
matching messages published thereafter

Message completeness

How can message completeness be defined in a publish/subscribe
system?
> first try: once a client subscribes to a filter, he gets all
matching messages published thereafter
» in an asynchronous system, this is not achievable if messages
are not cached (subscription must first be propagated through
the network)

Message completeness

How can message completeness be defined in a publish/subscribe
system?
> first try: once a client subscribes to a filter, he gets all
matching messages published thereafter
» in an asynchronous system, this is not achievable if messages
are not cached (subscription must first be propagated through
the network)
> better: after a client subscribes to a filter, there is a future
time at which he is guaranteed to see all messages published
thereafter

1N

Message completeness

How can message completeness be defined in a publish/subscribe
system?
> first try: once a client subscribes to a filter, he gets all
matching messages published thereafter
» in an asynchronous system, this is not achievable if messages
are not cached (subscription must first be propagated through
the network)
> better: after a client subscribes to a filter, there is a future
time at which he is guaranteed to see all messages published
thereafter
> even better: after a client subscribes to a filter, there is a
future time the client is notified about at which he gets
message completeness guarantee

11

The Need for a formal treatment

» A formal specification

» defines precisely what is expected from a correct system and
> allows to reason about the correctness of an implementation.

» A formal treatment gives new insights that could otherwise be
overlooked!

» Linear Temporal Logic offers a formalizm suitable for
characterization of the behaviour of distributed systems

19

State

> state s is assignment s =s:V 3 v — v of the state variables
v € V to values in their domains

19

State

> state s is assignment s =s:V 3 v — v of the state variables
v € V to values in their domains

> interface operations op trigger state transitions

1A

State

> state s is assignment s =s:V 3 v — v of the state variables
v € V to values in their domains

> interface operations op trigger state transitions

» a trace is a sequence of initial state sy, followed by interface
operations:

0 = S0, 0pP1,0pP2; - -+, OPn (1)

10

State

state s is assignment s = s :V 5 v — vs of the state variables
v € V to values in their domains

interface operations op trigger state transitions

a trace is a sequence of initial state sy, followed by interface
operations:

0 = S0, 0pP1,0pP2; - -+, OPn (1)

predicate applied to trace o refers to first state sy or first
operation op;

14

Temporal quantifiers

For some formula ¢ and o = sy, op1, 0p2, ..., Opn,
> O@(o) holds iff there exists i such that ¢ holds for the trace
s7,0Pi41;s- -

17

Temporal quantifiers

For some formula ¢ and o = sy, op1, 0p2, ..., Opn,
> O@(o) holds iff there exists i such that ¢ holds for the trace
s7,0Pi41;s- -

» O¢(o) holds iff for all i, ¢ holds for the trace s7, opjt1,. ..,

10

Temporal quantifiers

For some formula ¢ and o = sy, op1, 0p2, ..., Opn,
> O@(o) holds iff there exists i such that ¢ holds for the trace
s7,0Pi41;s- -

» O¢(o) holds iff for all i, ¢ holds for the trace s7, opjt1,. ..,
> O¢(0o) holds iff ¢ holds for the trace s{, opa,

10

LTL and Concurrency

LTL is well-suited to describe concurrent systems

A concurrent system is replaced by a nondeterministic
sequential one.

The concurrent execution of two operations in the real system
is replaced in the model by the nondeterminism of which one
occurs first.

This type of nondeterminism is conceptually different from
that studied in the area of automata theory (= branching
time).

aYa

vV VvV Vv VY

OOA

O0A

A= OB

OJA = 0B]
O[A = OA]
O[0A = 00B]
O[A v O-A]

LTL Examples

N1

State Variables in p/s systems

Px set of published notifications

S?,Ck set of acknowledged subscriptions

Sf,e"d set of pending subscriptions

Dy multiset of delivered notifications

Initial values of state variables: () for all of them

~N

Effect of interface operations on state variables

pub(X, n) Py = Px U {n}

sub(Y,F) | spend” — geend ()

unsub(Y, F) | S3K' = sack\ {F}; spend’ — gpend\ ()

ack(Y.F) | st = spend'\ (P} sk = spku (F)

notify(Y,n) | Dy, = Dy U {n}

D

Safety and Liveness

» Safety Conditions
» Something “irremediably” bad will never happen.

vV vy vy VvYyy

Usually, phrased as an invariant of the system.

Usually, trivially satisfied by doing nothing.

General form: Init = O-A.

Violation can be detected after finite time.

E.g. partial correctness (Program never halts with wrong
result)

5N

Safety and Liveness (2)

» Liveness Conditions

Something “good” that should happen eventually happens.
Usually, trivially satisfied by doing everything.

General form: Init = O[A = OB].

Violation can be detected after infinite time only.

Example: Termination (Program eventually halts)

vV vy VY VvYy

» Many useful system properties (e.g., total correctness) can be
expressed as the intersection of safety and liveness conditions.

NEC

Safaty axioms

A publish/subscribe system satisfies message complete safety if

>
O] notify(Y,n, X) = [OD—motify(Y, n,X)] (2)

NA

Safaty axioms

A publish/subscribe system satisfies message complete safety if

>
0 [notify(v, n, X) = [00=notify(Y, n, X)] (2)

D[nou‘fy(Y.nX)=[IX.ne PX]] (3)

N7

Safaty axioms

A publish/subscribe system satisfies message complete safety if

D[notify(Y, n, X) = [00=notify(Y, n, X)] (2)
D[nou‘fy(Y.nX)=[IX.ne PX]] (3)

D[notify(Y, nX)=3Fe S usik ne N(F)] (4)

O

Liveness axioms

A publish/subscribe system satisfies message complete liveness if

>

Ol (sub(Y, F) A =Qunsub(Y, F)) = Olack(Y, F) (5)

IaYe)

Liveness axioms

A publish/subscribe system satisfies message complete liveness if

>

0 [(sub(y, F) A ~Ounsub(Y, F)) = Olack(Y,F)| (5)

O [(ack(Y, F) A =Qunsub(Y, F)) =
(Opub(X,n) A ne N(F) =
Onotif (Y, n,X))} (6)

29N

Correctness

A publish /subscribe system is correct, if it satisfies safety and
liveness.

91

Distributed Implementation

N

Distributed Implementation

" Local Client
Broker

» Set of brokers By, ..., B, serving as access points.

o ko]

Distributed Implementation

™ Local Client
Broker

> Set of brokers By, ..., B, serving as access points.

> Brokers are concurrent processes cooperating by message
passing.

9N

Distributed Implementation

" Local Client
Broker

> Set of brokers By, ..., B, serving as access points.

> Brokers are concurrent processes cooperating by message
passing.

» Each broker B manages a mutually exclusive set of local
clients Lg and only communicates directly with its neighbor
brokers Np.

2°C

Assumptions

» Broker topology assumed to be acyclic.

» Channels are reliable (no corrupted, duplicated, lost, or
spurious messages).

» Message latency is bounded.

» Communication with clients conceptually treated as message
passing but assumed to be instantaneous.

o T~

Content-Based Routing Framework

» Each broker B manages a routing table Tg comprising a set
of routing entries.

7

Content-Based Routing Framework

» Each broker B manages a routing table Tg comprising a set
of routing entries.

> A routing entry is a pair (F, D) of a filter F and a destination
DelLgUNg.

20

Content-Based Routing Framework

» Each broker B manages a routing table Tg comprising a set
of routing entries.

> A routing entry is a pair (F, D) of a filter F and a destination
DelLgUNg.

» Brokers exchange three kinds of messages:

290

Content-Based Routing Framework

» Each broker B manages a routing table Tg comprising a set
of routing entries.

> A routing entry is a pair (F, D) of a filter F and a destination
DelLgUNg.
» Brokers exchange three kinds of messages:
» forward(n) (used to disseminate notifications)

AN

Content-Based Routing Framework

» Each broker B manages a routing table Tg comprising a set
of routing entries.

> A routing entry is a pair (F, D) of a filter F and a destination
DelLgUNg.
» Brokers exchange three kinds of messages:

» forward(n) (used to disseminate notifications)
» admin(S,U) (used to update routing tables)

11

Content-Based Routing Framework

» Each broker B manages a routing table Tg comprising a set
of routing entries.

> A routing entry is a pair (F, D) of a filter F and a destination
DelLgUNg.
» Brokers exchange three kinds of messages:

» forward(n) (used to disseminate notifications)
» admin(S,U) (used to update routing tables)
> admin_ack(8,U) (used for acknowledgement between brokers)

NN

Content-Based Routing Framework

» Each broker B manages a routing table Tg comprising a set
of routing entries.

> A routing entry is a pair (F, D) of a filter F and a destination
DelLgUNg.
» Brokers exchange three kinds of messages:

» forward(n) (used to disseminate notifications)
» admin(S,U) (used to update routing tables)
> admin_ack(8,U) (used for acknowledgement between brokers)

» Processing of forward and pub messages hardwired.

V. Ee)

v

v

v

v

Content-Based Routing Framework

Each broker B manages a routing table Tg comprising a set
of routing entries.

A routing entry is a pair (F, D) of a filter F and a destination
DelLgUNg.

Brokers exchange three kinds of messages:

» forward(n) (used to disseminate notifications)
» admin(S,U) (used to update routing tables)
> admin_ack(8,U) (used for acknowledgement between brokers)

Processing of forward and pub messages hardwired.

Processing of admin messages is customized by implementing
an instance of the administer procedure.

NA

Notification Forwarding

> If a broker receives a forward(n) / pub(n) message from a
neighbor / local client, it sends a forward(n) / notify(n)
message to all neighbors / local clients D for which there is a
routing entry (F, D) with n € N(F).

Ne

Notification Forwarding

> If a broker receives a forward(n) / pub(n) message from a
neighbor / local client, it sends a forward(n) / notify(n)
message to all neighbors / local clients D for which there is a
routing entry (F, D) with n € N(F).

» But a notification is never passed back to the neighbor it was
received from.

NG

Notification Forwarding

> If a broker receives a forward(n) / pub(n) message from a
neighbor / local client, it sends a forward(n) / notify(n)
message to all neighbors / local clients D for which there is a
routing entry (F, D) with n € N(F).

» But a notification is never passed back to the neighbor it was
received from.

» As the topology is acyclic, duplicate notifications are avoided.

N7

Notification Forwarding

If a broker receives a forward(n) / pub(n) message from a
neighbor / local client, it sends a forward(n) / notify(n)
message to all neighbors / local clients D for which there is a
routing entry (F, D) with n € N(F).

But a notification is never passed back to the neighbor it was
received from.

As the topology is acyclic, duplicate notifications are avoided.

As every notify(Y, n) has a preceding pub(X, n), no spurious
notifications are delivered.

V. Ke)

Handling of sub and unsub messages

» Handling of subscription changes is parametrized on
administer procedure.

NO

Handling of sub and unsub messages

» Handling of subscription changes is parametrized on
administer procedure.

» Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

N

Handling of sub and unsub messages

» Handling of subscription changes is parametrized on
administer procedure.

» Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

» Various routing algorithms can be implemented via
administer:

cC1

Handling of sub and unsub messages

» Handling of subscription changes is parametrized on
administer procedure.

» Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

» Various routing algorithms can be implemented via
administer:
» Flooding

N

Handling of sub and unsub messages

» Handling of subscription changes is parametrized on
administer procedure.

» Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

» Various routing algorithms can be implemented via
administer:

» Flooding
» Simple routing

cCHD

Handling of sub and unsub messages

» Handling of subscription changes is parametrized on
administer procedure.

» Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

» Various routing algorithms can be implemented via
administer:

» Flooding
» Simple routing
» Routing with filter merging

cCA

Rebeca

started by Ludger Fiege and Gero Miihl, TU Darmstadt as
Java-based implementation of p/s system

implemented along the lines of formal framework

based on microkernel architecture with routing component as
kernel

ported to C# by Andreas Ulbrich

uses events and delegates, seemlessly integrating into .NET
framework

extended (acknowledgements, caching) in student project
winter 2003/2004 at TU Berlin

| gl oy

Rebeca

started by Ludger Fiege and Gero Miihl, TU Darmstadt as
Java-based implementation of p/s system

implemented along the lines of formal framework

based on microkernel architecture with routing component as
kernel

ported to C# by Andreas Ulbrich

uses events and delegates, seemlessly integrating into .NET
framework

extended (acknowledgements, caching) in student project
winter 2003/2004 at TU Berlin

... Rebeca promises to become the first ever publish/subscribe
system whose correctness can be formally proven!

Ca

vV v v vV vV Vv Y

Future Work

Routing in cyclic topologies

Funnel functions

Fault tolerance

Adaptivity

Integration of routing and composite event detection
Streaming operators

Quality of Service

-7

Thank You.

Questions?

Andreas Tanner

FG Intelligent Networks and Management of Distributed Systems
Technische Universitat Berlin

tanner@ivs.tu-berlin.de

O

	Overview
	Publish/subscribe
	Message completeness
	Temporal logic
	Safety and Liveness
	Axioms for p/s systems
	Distributed Implementaion
	Rebeca

