
Message reliability and caching for publish/subscribe
systems

Andreas Tanner, Gero Mühl

Technische Universität Berlin
Einsteinufer 17, 10587 Berlin, Germany
{tanner,gmuehl}@ivs.tu-berlin.de

March 5, 2004

1

Publish/subscribe

Message completeness

Temporal logic

Safety and Liveness

Axioms for p/s systems

Distributed Implementaion

Rebeca

2

Publish/Subscribe

I Enables loosely coupled communication using notifications.

I Two kinds of “clients”
I Producers publish notifications
I Consumers subscribe to notifications

I Notification service
I Decouples producers from consumers
I Delivers a published notification to all consumers with a

matching subscription

3

Interface

Interface

Publish/Subscribe
System

sub(F)
unsub(F)

pub(n)

. . . Clients

notify(n)

Interaction

4

Basic Definitions and Assumptions

I A filter F is a mapping from the set of notifications N to the
boolean values true and false.

I A notification n matches a filter F iff F (n) = true.

I Set of notifications matched by a filter F and by a set of
filters A is denoted by N(F) and N(A), respectively.

I Notifications are unique and can be published only once.

5

Black box view of a publish/subscribe system

I Describes the system behavior by solely looking at its
interface.

Interface

Publish/Subscribe
System

sub(F)
unsub(F)

pub(n)

. . . Clients

notify(n)

Interaction

I Interface Operations (set of all actions A)

sub(Y ,F) Client Y subscribes to filter F

unsub(Y ,F) Client Y unsubscribes to filter F

ack(Y ,F) System notifies client Y about
message completeness guarantee

notify(Y , n) System notifies client Y notified about n

pub(X , n) Client X publishes n
6

Multicast

I publish/subscribe is special type of multicast
I event-based
I dynamically created groups

I problems classically considered for multicast:
I message completeness
I message order
I etc.

7

Message completeness

How can message completeness be defined in a publish/subscribe
system?

I first try: once a client subscribes to a filter, he gets all
matching messages published thereafter

I in an asynchronous system, this is not achievable if messages
are not cached (subscription must first be propagated through
the network)

I better: after a client subscribes to a filter, there is a future
time at which he is guaranteed to see all messages published
thereafter

I even better: after a client subscribes to a filter, there is a
future time the client is notified about at which he gets
message completeness guarantee

8

Message completeness

How can message completeness be defined in a publish/subscribe
system?

I first try: once a client subscribes to a filter, he gets all
matching messages published thereafter

I in an asynchronous system, this is not achievable if messages
are not cached (subscription must first be propagated through
the network)

I better: after a client subscribes to a filter, there is a future
time at which he is guaranteed to see all messages published
thereafter

I even better: after a client subscribes to a filter, there is a
future time the client is notified about at which he gets
message completeness guarantee

9

Message completeness

How can message completeness be defined in a publish/subscribe
system?

I first try: once a client subscribes to a filter, he gets all
matching messages published thereafter

I in an asynchronous system, this is not achievable if messages
are not cached (subscription must first be propagated through
the network)

I better: after a client subscribes to a filter, there is a future
time at which he is guaranteed to see all messages published
thereafter

I even better: after a client subscribes to a filter, there is a
future time the client is notified about at which he gets
message completeness guarantee

10

Message completeness

How can message completeness be defined in a publish/subscribe
system?

I first try: once a client subscribes to a filter, he gets all
matching messages published thereafter

I in an asynchronous system, this is not achievable if messages
are not cached (subscription must first be propagated through
the network)

I better: after a client subscribes to a filter, there is a future
time at which he is guaranteed to see all messages published
thereafter

I even better: after a client subscribes to a filter, there is a
future time the client is notified about at which he gets
message completeness guarantee

11

The Need for a formal treatment

I A formal specification
I defines precisely what is expected from a correct system and
I allows to reason about the correctness of an implementation.

I A formal treatment gives new insights that could otherwise be
overlooked!

I Linear Temporal Logic offers a formalizm suitable for
characterization of the behaviour of distributed systems

12

State

I state s is assignment s = s : V 3 v 7→ vs of the state variables
v ∈ V to values in their domains

I interface operations op trigger state transitions

I a trace is a sequence of initial state s0, followed by interface
operations:

σ = s0, op1, op2, . . . , opn (1)

I predicate applied to trace σ refers to first state s0 or first
operation op1

13

State

I state s is assignment s = s : V 3 v 7→ vs of the state variables
v ∈ V to values in their domains

I interface operations op trigger state transitions

I a trace is a sequence of initial state s0, followed by interface
operations:

σ = s0, op1, op2, . . . , opn (1)

I predicate applied to trace σ refers to first state s0 or first
operation op1

14

State

I state s is assignment s = s : V 3 v 7→ vs of the state variables
v ∈ V to values in their domains

I interface operations op trigger state transitions

I a trace is a sequence of initial state s0, followed by interface
operations:

σ = s0, op1, op2, . . . , opn (1)

I predicate applied to trace σ refers to first state s0 or first
operation op1

15

State

I state s is assignment s = s : V 3 v 7→ vs of the state variables
v ∈ V to values in their domains

I interface operations op trigger state transitions

I a trace is a sequence of initial state s0, followed by interface
operations:

σ = s0, op1, op2, . . . , opn (1)

I predicate applied to trace σ refers to first state s0 or first
operation op1

16

Temporal quantifiers

For some formula φ and σ = s0, op1, op2, . . . , opn,

I ♦φ(σ) holds iff there exists i such that φ holds for the trace
sσ
i , opi+1, . . .,

I �φ(σ) holds iff for all i , φ holds for the trace sσ
i , opi+1, . . .,

I eφ(σ) holds iff φ holds for the trace sσ
1 , op2,

17

Temporal quantifiers

For some formula φ and σ = s0, op1, op2, . . . , opn,

I ♦φ(σ) holds iff there exists i such that φ holds for the trace
sσ
i , opi+1, . . .,

I �φ(σ) holds iff for all i , φ holds for the trace sσ
i , opi+1, . . .,

I eφ(σ) holds iff φ holds for the trace sσ
1 , op2,

18

Temporal quantifiers

For some formula φ and σ = s0, op1, op2, . . . , opn,

I ♦φ(σ) holds iff there exists i such that φ holds for the trace
sσ
i , opi+1, . . .,

I �φ(σ) holds iff for all i , φ holds for the trace sσ
i , opi+1, . . .,

I eφ(σ) holds iff φ holds for the trace sσ
1 , op2,

19

LTL and Concurrency

I LTL is well-suited to describe concurrent systems

I A concurrent system is replaced by a nondeterministic
sequential one.

I The concurrent execution of two operations in the real system
is replaced in the model by the nondeterminism of which one
occurs first.

I This type of nondeterminism is conceptually different from
that studied in the area of automata theory (⇒ branching
time).

20

LTL Examples

I ♦�A

I �♦A

I A ⇒ ♦B

I �[A ⇒ ♦B]

I �[A ⇒ �A]

I �[�A ⇒ ♦�B]

I �[A ∨�¬A]

21

State Variables in p/s systems

PX set of published notifications

Sack
Y set of acknowledged subscriptions

Spend
Y set of pending subscriptions

DY multiset of delivered notifications

Initial values of state variables: ∅ for all of them

22

Effect of interface operations on state variables

pub(X , n) P ′
X = PX ∪ {n}

sub(Y ,F) Spend
Y

′
= Spend

Y ∪ {F}
unsub(Y ,F) Sack

Y
′
= Sack

Y \ {F}; Spend
Y

′
= Spend

Y \ {F}
ack(Y .F) Spend

Y

′
= Spend

Y

′
\ {F}; Sack

Y
′
= Sack

Y ∪ {F}
notify(Y , n) D ′

Y = DY ∪ {n}

23

Safety and Liveness

I Safety Conditions
I Something “irremediably” bad will never happen.
I Usually, phrased as an invariant of the system.
I Usually, trivially satisfied by doing nothing.
I General form: Init ⇒ �¬A.
I Violation can be detected after finite time.
I E.g. partial correctness (Program never halts with wrong

result)

24

Safety and Liveness (2)

I Liveness Conditions
I Something “good” that should happen eventually happens.
I Usually, trivially satisfied by doing everything.
I General form: Init ⇒ �[A ⇒ ♦B].
I Violation can be detected after infinite time only.
I Example: Termination (Program eventually halts)

I Many useful system properties (e.g., total correctness) can be
expressed as the intersection of safety and liveness conditions.

25

Safaty axioms

A publish/subscribe system satisfies message complete safety if

I

�
[
notify(Y , n,X) ⇒

[e�¬notify(Y , n,X)
]

(2)

I

�
[
notify(Y , n,X) ⇒

[
∃X . n ∈ PX

]]
(3)

I

�
[
notify(Y , n,X) ⇒ ∃F ∈ Spend

Y ∪ Sack
Y . n ∈ N(F)

]
(4)

26

Safaty axioms

A publish/subscribe system satisfies message complete safety if

I

�
[
notify(Y , n,X) ⇒

[e�¬notify(Y , n,X)
]

(2)

I

�
[
notify(Y , n,X) ⇒

[
∃X . n ∈ PX

]]
(3)

I

�
[
notify(Y , n,X) ⇒ ∃F ∈ Spend

Y ∪ Sack
Y . n ∈ N(F)

]
(4)

27

Safaty axioms

A publish/subscribe system satisfies message complete safety if

I

�
[
notify(Y , n,X) ⇒

[e�¬notify(Y , n,X)
]

(2)

I

�
[
notify(Y , n,X) ⇒

[
∃X . n ∈ PX

]]
(3)

I

�
[
notify(Y , n,X) ⇒ ∃F ∈ Spend

Y ∪ Sack
Y . n ∈ N(F)

]
(4)

28

Liveness axioms

A publish/subscribe system satisfies message complete liveness if

I

�
[
(sub(Y ,F) ∧ ¬♦unsub(Y ,F)) ⇒ ♦[ack(Y ,F)

]
(5)

I

�
[
(ack(Y ,F) ∧ ¬♦unsub(Y ,F)) ⇒(

♦pub(X , n) ∧ n ∈ N(F) ⇒

♦notify(Y , n,X)
)]

(6)

29

Liveness axioms

A publish/subscribe system satisfies message complete liveness if

I

�
[
(sub(Y ,F) ∧ ¬♦unsub(Y ,F)) ⇒ ♦[ack(Y ,F)

]
(5)

I

�
[
(ack(Y ,F) ∧ ¬♦unsub(Y ,F)) ⇒(

♦pub(X , n) ∧ n ∈ N(F) ⇒

♦notify(Y , n,X)
)]

(6)

30

Correctness

A publish/subscribe system is correct, if it satisfies safety and
liveness.

31

Distributed Implementation

B1

X5

B3

X1

X2

X3

X6

Local Client

Broker
X8

X7

B5

B4

B2

X4

I Set of brokers B1, . . . ,Bn serving as access points.

I Brokers are concurrent processes cooperating by message
passing.

I Each broker B manages a mutually exclusive set of local
clients LB and only communicates directly with its neighbor
brokers NB .

32

Distributed Implementation

B1

X5

B3

X1

X2

X3

X6

Local Client

Broker
X8

X7

B5

B4

B2

X4

I Set of brokers B1, . . . ,Bn serving as access points.

I Brokers are concurrent processes cooperating by message
passing.

I Each broker B manages a mutually exclusive set of local
clients LB and only communicates directly with its neighbor
brokers NB .

33

Distributed Implementation

B1

X5

B3

X1

X2

X3

X6

Local Client

Broker
X8

X7

B5

B4

B2

X4

I Set of brokers B1, . . . ,Bn serving as access points.

I Brokers are concurrent processes cooperating by message
passing.

I Each broker B manages a mutually exclusive set of local
clients LB and only communicates directly with its neighbor
brokers NB .

34

Distributed Implementation

B1

X5

B3

X1

X2

X3

X6

Local Client

Broker
X8

X7

B5

B4

B2

X4

I Set of brokers B1, . . . ,Bn serving as access points.

I Brokers are concurrent processes cooperating by message
passing.

I Each broker B manages a mutually exclusive set of local
clients LB and only communicates directly with its neighbor
brokers NB .

35

Assumptions

I Broker topology assumed to be acyclic.

I Channels are reliable (no corrupted, duplicated, lost, or
spurious messages).

I Message latency is bounded.

I Communication with clients conceptually treated as message
passing but assumed to be instantaneous.

36

Content-Based Routing Framework

I Each broker B manages a routing table TB comprising a set
of routing entries.

I A routing entry is a pair (F ,D) of a filter F and a destination
D ∈ LB ∪ NB .

I Brokers exchange three kinds of messages:

I forward(n) (used to disseminate notifications)
I admin(S,U) (used to update routing tables)
I admin ack(S,U) (used for acknowledgement between brokers)

I Processing of forward and pub messages hardwired.

I Processing of admin messages is customized by implementing
an instance of the administer procedure.

37

Content-Based Routing Framework

I Each broker B manages a routing table TB comprising a set
of routing entries.

I A routing entry is a pair (F ,D) of a filter F and a destination
D ∈ LB ∪ NB .

I Brokers exchange three kinds of messages:

I forward(n) (used to disseminate notifications)
I admin(S,U) (used to update routing tables)
I admin ack(S,U) (used for acknowledgement between brokers)

I Processing of forward and pub messages hardwired.

I Processing of admin messages is customized by implementing
an instance of the administer procedure.

38

Content-Based Routing Framework

I Each broker B manages a routing table TB comprising a set
of routing entries.

I A routing entry is a pair (F ,D) of a filter F and a destination
D ∈ LB ∪ NB .

I Brokers exchange three kinds of messages:

I forward(n) (used to disseminate notifications)
I admin(S,U) (used to update routing tables)
I admin ack(S,U) (used for acknowledgement between brokers)

I Processing of forward and pub messages hardwired.

I Processing of admin messages is customized by implementing
an instance of the administer procedure.

39

Content-Based Routing Framework

I Each broker B manages a routing table TB comprising a set
of routing entries.

I A routing entry is a pair (F ,D) of a filter F and a destination
D ∈ LB ∪ NB .

I Brokers exchange three kinds of messages:
I forward(n) (used to disseminate notifications)

I admin(S,U) (used to update routing tables)
I admin ack(S,U) (used for acknowledgement between brokers)

I Processing of forward and pub messages hardwired.

I Processing of admin messages is customized by implementing
an instance of the administer procedure.

40

Content-Based Routing Framework

I Each broker B manages a routing table TB comprising a set
of routing entries.

I A routing entry is a pair (F ,D) of a filter F and a destination
D ∈ LB ∪ NB .

I Brokers exchange three kinds of messages:
I forward(n) (used to disseminate notifications)
I admin(S,U) (used to update routing tables)

I admin ack(S,U) (used for acknowledgement between brokers)

I Processing of forward and pub messages hardwired.

I Processing of admin messages is customized by implementing
an instance of the administer procedure.

41

Content-Based Routing Framework

I Each broker B manages a routing table TB comprising a set
of routing entries.

I A routing entry is a pair (F ,D) of a filter F and a destination
D ∈ LB ∪ NB .

I Brokers exchange three kinds of messages:
I forward(n) (used to disseminate notifications)
I admin(S,U) (used to update routing tables)
I admin ack(S,U) (used for acknowledgement between brokers)

I Processing of forward and pub messages hardwired.

I Processing of admin messages is customized by implementing
an instance of the administer procedure.

42

Content-Based Routing Framework

I Each broker B manages a routing table TB comprising a set
of routing entries.

I A routing entry is a pair (F ,D) of a filter F and a destination
D ∈ LB ∪ NB .

I Brokers exchange three kinds of messages:
I forward(n) (used to disseminate notifications)
I admin(S,U) (used to update routing tables)
I admin ack(S,U) (used for acknowledgement between brokers)

I Processing of forward and pub messages hardwired.

I Processing of admin messages is customized by implementing
an instance of the administer procedure.

43

Content-Based Routing Framework

I Each broker B manages a routing table TB comprising a set
of routing entries.

I A routing entry is a pair (F ,D) of a filter F and a destination
D ∈ LB ∪ NB .

I Brokers exchange three kinds of messages:
I forward(n) (used to disseminate notifications)
I admin(S,U) (used to update routing tables)
I admin ack(S,U) (used for acknowledgement between brokers)

I Processing of forward and pub messages hardwired.

I Processing of admin messages is customized by implementing
an instance of the administer procedure.

44

Notification Forwarding

I If a broker receives a forward(n) / pub(n) message from a
neighbor / local client, it sends a forward(n) / notify(n)
message to all neighbors / local clients D for which there is a
routing entry (F ,D) with n ∈ N(F).

I But a notification is never passed back to the neighbor it was
received from.

I As the topology is acyclic, duplicate notifications are avoided.

I As every notify(Y , n) has a preceding pub(X , n), no spurious
notifications are delivered.

45

Notification Forwarding

I If a broker receives a forward(n) / pub(n) message from a
neighbor / local client, it sends a forward(n) / notify(n)
message to all neighbors / local clients D for which there is a
routing entry (F ,D) with n ∈ N(F).

I But a notification is never passed back to the neighbor it was
received from.

I As the topology is acyclic, duplicate notifications are avoided.

I As every notify(Y , n) has a preceding pub(X , n), no spurious
notifications are delivered.

46

Notification Forwarding

I If a broker receives a forward(n) / pub(n) message from a
neighbor / local client, it sends a forward(n) / notify(n)
message to all neighbors / local clients D for which there is a
routing entry (F ,D) with n ∈ N(F).

I But a notification is never passed back to the neighbor it was
received from.

I As the topology is acyclic, duplicate notifications are avoided.

I As every notify(Y , n) has a preceding pub(X , n), no spurious
notifications are delivered.

47

Notification Forwarding

I If a broker receives a forward(n) / pub(n) message from a
neighbor / local client, it sends a forward(n) / notify(n)
message to all neighbors / local clients D for which there is a
routing entry (F ,D) with n ∈ N(F).

I But a notification is never passed back to the neighbor it was
received from.

I As the topology is acyclic, duplicate notifications are avoided.

I As every notify(Y , n) has a preceding pub(X , n), no spurious
notifications are delivered.

48

Handling of sub and unsub messages

I Handling of subscription changes is parametrized on
administer procedure.

I Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

I Various routing algorithms can be implemented via
administer:

I Flooding
I Simple routing
I Routing with filter merging

49

Handling of sub and unsub messages

I Handling of subscription changes is parametrized on
administer procedure.

I Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

I Various routing algorithms can be implemented via
administer:

I Flooding
I Simple routing
I Routing with filter merging

50

Handling of sub and unsub messages

I Handling of subscription changes is parametrized on
administer procedure.

I Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

I Various routing algorithms can be implemented via
administer:

I Flooding
I Simple routing
I Routing with filter merging

51

Handling of sub and unsub messages

I Handling of subscription changes is parametrized on
administer procedure.

I Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

I Various routing algorithms can be implemented via
administer:

I Flooding

I Simple routing
I Routing with filter merging

52

Handling of sub and unsub messages

I Handling of subscription changes is parametrized on
administer procedure.

I Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

I Various routing algorithms can be implemented via
administer:

I Flooding
I Simple routing

I Routing with filter merging

53

Handling of sub and unsub messages

I Handling of subscription changes is parametrized on
administer procedure.

I Paper gives criterias (valid routing algorithms) that when met,
lead to correct system

I Various routing algorithms can be implemented via
administer:

I Flooding
I Simple routing
I Routing with filter merging

54

Rebeca

I started by Ludger Fiege and Gero Mühl, TU Darmstadt as
Java-based implementation of p/s system

I implemented along the lines of formal framework

I based on microkernel architecture with routing component as
kernel

I ported to C# by Andreas Ulbrich

I uses events and delegates, seemlessly integrating into .NET
framework

I extended (acknowledgements, caching) in student project
winter 2003/2004 at TU Berlin

I . . . Rebeca promises to become the first ever publish/subscribe
system whose correctness can be formally proven!

55

Rebeca

I started by Ludger Fiege and Gero Mühl, TU Darmstadt as
Java-based implementation of p/s system

I implemented along the lines of formal framework

I based on microkernel architecture with routing component as
kernel

I ported to C# by Andreas Ulbrich

I uses events and delegates, seemlessly integrating into .NET
framework

I extended (acknowledgements, caching) in student project
winter 2003/2004 at TU Berlin

I . . . Rebeca promises to become the first ever publish/subscribe
system whose correctness can be formally proven!

56

Future Work

I Routing in cyclic topologies

I Funnel functions

I Fault tolerance

I Adaptivity

I Integration of routing and composite event detection

I Streaming operators

I Quality of Service

57

Thank You.

Questions?

Andreas Tanner
FG Intelligent Networks and Management of Distributed Systems
Technische Universität Berlin
tanner@ivs.tu-berlin.de

58

	Overview
	Publish/subscribe
	Message completeness
	Temporal logic
	Safety and Liveness
	Axioms for p/s systems
	Distributed Implementaion
	Rebeca

