Security through Bracket Methods

Klaus Espenlaub and J. Leslie Keedy

Department of Computer Structures,
University of Ulm, Germany

email: keedy@informatik.uni-ulm.de

SPEEDS

Qualifiers and Bracket Methods:
The Principle

+ A qualifying object (qualifier) Is a normal
object which also has bracket methods.

» These are methods which are not directly invoked.

* |nstead they are activated when a client object
Invokes an appropriate method of a target object.

+ Thus a bracket method appears to catch an
Invocation of a target method of an object.

+ The kernel activates the qualifying objects
assoclated with the target object.

SPEEDS

Qualifiers and Bracket Methods:
The Principle

+ Here 1s a normal method 1nvocation:

method invocation
Client object Target object
method return

Qualifiers and Bracket Methods:
The Principle

+ Now we add a qualifier:

c)

bracket method
Target object
—

Qualifiers and Bracket Methods:
The Principle

+ In this form a bracket method replaces the
method which was invoked by the client.

+ But there Is a special mechanism (which we
designate here by the keyword body) to allow

the bracket to invoke the target method.

+ In this case the bracket method can be viewed
as having
 aprelude (code before the target is invoked), and
o a postlude (code after the target is invoked).

SPEEDS

Qualifiers and Bracket Methods:
The Principle

method

invocation>(N\ body
prelude; invocatio

body;
postlude

Client object Target object
method

return

Qualifiers and Bracket Methods:
The Principle

+ The body mechanism Is In fact a normal
statement (a special variant of a method call),
Implemented in SPEEDOS via the kernel.

+ Hence It can be executed conditionally.

SPEEDS

Qualifiers and Bracket Methods:
The Principle

method

Invocatio conditional bod
ggremde; \invocatin
If (test) body;

postlude

Client object Target object
method

return

/\

Qualifying object

Kinds of Bracket Methods

+ T here are two kinds of bracket methods:

» Call-in bracket methods are applied to a target
object as Its methods are invoked. Here the
keyword body IS used.

« Call-out bracket methods are applied to a target
object as It invokes methods of other objects.
Here the keyword call Is used.

+ As all objects can be qualified in this way,
the same object can have both call-in and
call-out methods associated with It:

SPEEDS

An Object Qualified by a Qualifier
with Call-in and Call-out Methods

method body method call

. . e N
II’]VOC&tIOH CALL-IN Invocation Invocation (CALL-OUT\ Invocation

prelude; prelude;

call, p—»
postlude ‘

body: Target object

method call
postlude return return

bracket /7 ‘\

return Qualifying
object

An Object Qualifiea
by Multiple Qualifiers

s N\ [) s N [N\
call-in call-in call-out call-out
bracket | bracket Target bracket [P bracket Called
for for object for for object
+ qual.1 B qual.2 qual.2] qual.1 J

Qlifying objecty
K Qualifying object 1)

Multiple Qualified Objects

4 N\
call-in

Client bracket
object for

qual.1 B

Vs

~N

call-in

bracket

for

qual.2

/

Qualifying object 2

(\
call-out

bracket
for
qual.2

N

,

Qualifying object)

e —

(\
call-out

bracket
for
qual.1

(N\
call-in

bracket
for

qual.3 B

Vs

for

\

qual.

/

~N

call-in
bracket

4

(\
call-out

bracket
for
qual.4

N

Qualifying object 4

(\
call-out

bracket
for
qual.3

,

Qualifying object)

e —

\

Called
object

Which Methods Can be Qualified?

+ In the language Timor, also being developed In
Ulm, there Is a distinction between an object's

e reader methods, and Its
e Writer methods.

+ These can be bracketed separately.

+ Methods can be bracketed individually and
their parameters inspected or modified In
bracket methods.

+ In SPEEDQOS this Is left open, but modules can
be developed which support all possibilities.

SPEEDUS

Access to Data

+ Qualifiers are separate objects with their own
data items (in SPEEDOS persistent data).

* These data items can be accessed by bracket
methods.

A qualifier can have normal methods which may
access (e.g. set up and modify) these data items.

+ A bracket method can (in appropriate cases)
access parameters being passed to a target,
but has no access to the data of their targets.

14 /25 E

Some Security Possibilities:
Stalking a Hacker

+ A system manager who discovers that a
hacker Is breaking into his system (recall
Clifford Stoll and the Bremen hacker) can
easily take preventative measures.

+ To do this he can set up a qualifier as a
decoy, which (for example) feeds back false
Information to the hacker and records
Information about the hacker's activities.

Protecting Information and/or
Access from a Hacker

c)

CALLIN
bracket method Target object
OF TARGET
— o
Decoy
object
containing false
information

Some Security Possibilities:
Monitoring the Use of Objects

+ A target module can have an assoclated
gualifier which records Iinformation about the
clients who Invoke the target.

+ Neither the client nor the target have to be
modified to include the bracket functionality.

+ Information collected can be stored In the
persistent data of the qualifier.

Using Qualifiers to Monitor
the Use of Objects

method

invocatiog /=~)\ body
record data invocatio

_ about the call;
Client body:;
object(s) 4= and about the
returned info.
— I
Monitoring
object with record
of calls

Monitored
method object
return

Some Security Possibilities:

Installing an Access Control List

+ A target module can have an assoclated
gualifier which maintains an ACL In Its
persistent data.

+ Whenever a caller invokes a method of the
target, the appropriate bracket method
checks the right of the client to call the
module.

Installing an Access Control List

Client
object(s)

method

invocation>(\conditional bod

CALLIN

Invocation

If (clientin
ACL) body;
of Protected
Object
— I
ACL object
with Access Rights
Information

ACL-
method Protected

return object

Some Security Possibilities:
Confining an Object

+ A module can have an associated call-out
qualifier which ensures that it only accesses
permitted destination modules.

+ This can be used for example to confine a
spooler to using only a permitted printer.

Confining a Spooler

method

invocation = \conditional bod
> CALLOUT invocatipn

If (call is to the
Spooler permitted
object 4 Printer) cal I;

OF SPOOLER

ﬁnfinemﬁ
object
with Permitted
Destinations

Printer

method object
return

Conclusion

+ Qualifiers with bracket methods provide
limitless possibilities for enforcing
protection reguirements in an appropriately
designed system.

+ This includes solutions to problems such as

o capability revocation,

e various confinement problems (e.g. the Bell-
LaPadula security model).

+ In fact any rule-based protection system can
In principle be implemented.

SPEEDUS

Security through Bracket Methods

Klaus Espenlaub and J. Leslie Keedy

Department of Computer Structures,
University of Ulm, Germany

email: keedy@informatik.uni-ulm.de

24125 E

Web Information

SPEEDOS:
http://www.speedos-security.org

MONADS:
http://www.monads-security.org

Qualifying Types In Timor:
http://www.timor-programming.org

25/25 E

	Security through Bracket Methods
	Qualifiers and Bracket Methods: The Principle
	Qualifiers and Bracket Methods: The Principle
	Qualifiers and Bracket Methods: The Principle
	Qualifiers and Bracket Methods: The Principle
	Qualifiers and Bracket Methods: The Principle
	Qualifiers and Bracket Methods: The Principle
	Qualifiers and Bracket Methods: The Principle
	Kinds of Bracket Methods
	An Object Qualified by a Qualifier with Call-in and Call-out Methods
	An Object Qualified by Multiple Qualifiers
	Multiple Qualified Objects
	Which Methods Can be Qualified?
	Access to Data
	Some Security Possibilities: Stalking a Hacker
	Protecting Information and/or Access from a Hacker
	Some Security Possibilities: Monitoring the Use of Objects
	Using Qualifiers to Monitor the Use of Objects
	Some Security Possibilities: Installing an Access Control List
	Installing an Access Control List
	Some Security Possibilities: Confining an Object
	Confining a Spooler
	Conclusion
	Security through Bracket Methods
	Web Information

