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Distributed storage consistency 
• Coherence: How do processes see updates? 

- invalidate: a write operation invalidates all replicates on other nodes, 
- update: after a write operation all existing replicates are updated.  

• Consistency: When do processes see updates? 
- contract between memory and processes. 
- All processes should have a common perspective on the distributed storage. 
- Example: multiplayer racing game  without consistency both players believe they are the winner. 
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• Choosing a consistency model is always a trade off: 

- strong consistency is easy to program but less efficient, 
- weak consistency is more efficient but harder to program. 

• Programmers must spend time for performance tuning of parallel programs: 
- improving concurrency and preserving correctness,  
- messages, locks, barriers, monitors, semaphores, begin/end-of-transaction … 
 



Restartable DSM transactions 
• Plurix Transactions observe the ACId principle: 

- Only after a successful commit of a transaction its modifications become visible to other stations. 
- When a transaction aborts all its modifications are undone  restartability. 

• All computations are implicitly encapsulated into transactions. 
• Read/write-sets are collected during the course of each transaction. 
• The commit request broadcasts the write-set to all stations in the cluster. 
• Stations will individually check whether they have to abort/restart the TA. 
• Shadow copies of modified pages are created and restored when a TA aborts. 
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Optimistic synchronisation  
• Assumption: read/write collisions between overlapping transactions are infrequent. 

• Optimistic synchronisation lets the computation proceed and masks network latency. 

• Traditional locks and barriers introduce network latency and the risk of deadlock. 

• Short transactions reduce the probability of a collision. 
 

• To reduce collision cost long transactions may be explicitly split into smaller ones: 

 

- Integrated monitor facilities allow easy identification of critical hot spots. 

 

 

 

 

 

• Typical Plurix transactions are implicit and take much less than 1 second: 
- Entering a mouse click, a keystroke or a system command, 
- Compilation of a class or a program module, 
- Computation of a video frame ... 

 

 



Architecture of the Plurix DSM system 
• Sophisticated DSM memory management for PC clusters. 
• Non-preemptive transaction loop in each station. 
• Non-transactional interrupt & kernel space. 
• Naming for persistent objects. 
• Native Intel486 code. 
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Cluster configuration 
• The Plurix PC cluster:  

- Network adapter:    3com 905B-TX at 100 MBit half duplex 
 - Main Processor:   Athlon XP2500+ at a regular 1.8 GHz 

- Main memory:    512 MB DDR-RAM 
- Motherboard:     Asus A7V8X-X 
- 12 nodes. 
 

• Ray Tracer:  
- m lines per block, 
- N blocks per Image, 
- two phases: 

o block allocation (short), 
o pixel computation (longer), 

- all blocks are registered in the naming service, 
- adjustable transaction computation time interval, 
- faster nodes calculate more blocks as slower ones. 
 

• The test scene: 3 light sources, 8 triangles, 104 reflecting spheres  

 
 
 
 
 
 
 
 
 
 
 
 



Computation time depending on blocksize and transaction time 
• Larger blocksize for allocation of scanlines reduces collisions between stations. 

• Longer transaction time reduces the overhead percentage ( ~ 300 µ sec/TA ). 

elapsed time in milliseconds 

40a30m: 
40 lines per block 
30ms per TA 
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Computation time by number of nodes 
• A single station still incurs transaction overhead but no paging and no collisions 

• A single station takes approximately 3.5 times longer than 4 stations. 

• Linear with number of pixels in the image. 

elapsed time in milliseconds 
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Speedup by number of nodes, varying resolution 
• Large image sizes reduce the amount of collisions. 

• Collisions are more severe with many cluster stations. 

speedup 
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Computational speed-up  
• Measured with up to 12 nodes. 
• Good scalability for medium sized images (75% of max. speedup). 
• Very good scalability for large size images (85% of max. speedup). 

speedup 
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Conclusion 
• A transactional DSM is an alternative to message passing application frameworks. 

• It provides strong consistency for all shared objects in the cluster. 

• Synchronising sets of state changes (transactions) is efficient. 

•  It simplifies the development of distributed applications. 

• It lends itself to lean & reliable implementation => 

 

• Correctness of the algorithm is easily achievable. 

• Concurrent performance requires tuning. 

• Access patterns require special care. 
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