
Generalized Optional Locking
in Distributed Systems

Thomas Schöbel-Theuer, University of Stuttgart,
Germany

schoebel@informatik.uni-stuttgart.de
www.athomux.net

Outline
● Problem: mutual exclusion

– very slow in distributed systems (esp. fine-grained)
– most distributed systems try to avoid / circumvent it
– efficient solution => uniform programming models

● Idea: exploit spatial locality of locks
– 2 kinds of locks: obligatory / optional
– negotiate the size of optional locks dynamically

(in difference to hierarchical locking)
● Performance Study => high speedups possible
● Further Result: communication paradigm is

special case of optional locking
● Future work / Conclusions

Preparation

● Don't use substitute objects, e.g. semaphore
● Issue lock requests directly on the memory

region occupied by a data object
– similar to Unix lockf() or fcntl() locking
– characterized by (startaddress,length,locktype)

● => locality of access behavior translates to
locking directly

Optional Locks

● 2 types: obligatory / optional
● Optional lock is locally convertible to

obligatory lock at any time, no network traffic

Negotiation of Optional Locks

Scenario: central lockmanager

Retraction of Optional Locks

Performance Study

● Experiments: TPC-like database benchmarks
on PostgreSQL => observed locking patterns

● Simulator: distribute n server threads to m ≤ n
virtual network sites, count # of lock/retract
requests for different negotiation strategies

● Results: speedup factors from ~30 to ~180
(speedups relative to known obligatory lock
prefetching/caching: from ~0.93 to ~5.4)

● More details => paper

Message Passing as Special
Case of Optional Locking

Consequences

● Message Passing paradigm is a special case of
optional locking

● Merged optional locks correspond to coalesced
messages

● => efficient solution of both mutual exclusion and
message passing is possible in uniform way

● Bridging the bottleneck of Distributed Systems no
longer “special”?

● Distributed Shared Memory (DSM) should be
reconsidered (when combined with optional
locking)

Future Work
● Symmetric optional locking (no central server)
● Reliability, failure resilience, security, ...
● New applications, formerly unsuitable for

distributed computing?
● Practical experience ... (a lot missing)

– Distributed databases?
– Distributed operating systems / middleware:

Athomux prototype => meta-middleware based on
LEGO principle ==> www.athomux.net

– High-performance / cluster computing
– Other ideas => contact me

Contribution / Conclusions

● Automated negotiation of locking
granularities

● High speedups for mutual exclusion
● Emulation of message passing,

probably of other synchronization scenarios
● => uniform programming models possible
● Details, client-server algorithm + proof

=> paper, www.athomux.net
● Further research necessary

e.g. negotiation strategies, thrashing prevention, practices...

