
Experiences with the Event-
Driven REFLEX Operating
System

Karsten Walther, Reinhard Hemmerling, Jörg Nolte
Chair Distributed Systems / Operating Systems

BTU Cottbus



Overview

• Introduction to Reflex
• The Example Application
• Writing an Application
• Conclusion



REFLEX 

• Real-time Event FLow EXecutive
• Event flow based programming model
• Schedulable passive objects

– according to an Earliest-Deadline-First strategy

• Implemented in C++
• Intended use in deeply embedded 

environments
– (Real-Time) Controlling applications
– Sensor networks



REFLEX-Scheme



REFLEX

• all flows of execution are started by an 
interrupt

• when data is written on an input, the 
corresponding activity is reported to the 
scheduler

• Scheduler activates the Activity then 
according ist EDF strategy

• Activities can be connected if datatype 
matches, so a system build out of highly 
reusable software fragments are possible



Activities



Activities

• are the place for user code
• run-method is called by the scheduler



Sinks



Sinks

• is the abstraction to which flowdata is 
written

• key component for decoupling of 
activities

• has value copy semantics



House Control System

ADConverter ModulusCounter PortK PortH I2CController

RawValue-
Converter

WarmWater-
Control

OilBunker-
Control

Room-
Control

Solarcollector-
Control

Doghouse-
Control

DCF77-ClockADC-
Control

Poweroutputs

Heating-
Control

PortA PortB

Logical Clock Digital Inputs

Light-
Control

Alarm-
systemDigital Outputs

Serial Interface

Timer



House Control System

• Complex system, which has 2 logical 
parts, heating control and alarm system

• every rectangle is an Activity
• blue rectangle are drivers
• Serial interface is stdout



Sampling

ADConverter ModulusCounter PortK PortH I2CController

RawValue-
Converter

WarmWater-
Control

OilBunker-
Control

Room-
Control

Solarcollector-
Control

Doghouse-
Control

DCF77-ClockADC-
Control

Poweroutputs

Heating-
Control

PortA PortB

Logical Clock Digital Inputs

Light-
Control

Alarm-
systemDigital Outputs

Serial Interface

Timer



Sampling

• most basic function for target 
applications

• periodically sampling can be 
implemented by inherently existing 
logical clock

• logical clock is also need by the 
scheduler



Distribution of Events

ADConverter ModulusCounter PortK PortH I2CController

RawValue-
Converter

WarmWater-
Control

OilBunker-
Control

Room-
Control

Solarcollector-
Control

Doghouse-
Control

DCF77-ClockADC-
Control

Poweroutputs

Heating-
Control

PortA PortB

Logical Clock Digital Inputs

Light-
Control

Alarm-
systemDigital Outputs

Serial Interface

Timer



Distribution of Events

• Often more than one activity is 
interested in some data

• Nevertheless mostly the origin should 
not care about

• so a wire abstraction is needed
• the wire itself is a sink



Combined Inputs

ADConverter ModulusCounter PortK PortH I2CController

RawValue-
Converter

WarmWater-
Control

OilBunker-
Control

Room-
Control

Solarcollector-
Control

Doghouse-
Control

DCF77-ClockADC-
Control

Poweroutputs

Heating-
Control

PortA PortB

Logical Clock Digital Inputs

Light-
Control

Alarm-
systemDigital Outputs

Serial Interface

Timer



Combined Inputs

• needed for example for port sharing
• distinct origins writing to distinct bits
• for convinience extended sinks are used



Using Timers

ADConverter ModulusCounter PortK PortH I2CController

RawValue-
Converter

WarmWater-
Control

OilBunker-
Control

Room-
Control

Solarcollector-
Control

Doghouse-
Control

DCF77-ClockADC-
Control

Poweroutputs

Heating-
Control

PortA PortB

Logical Clock Digital Inputs

Light-
Control

Alarm-
systemDigital Outputs

Serial Interface

Timer



Using Timers

• often used for timeout
• timer can be started and stopped
• timer fires by writing data to a sink



Multiple Inputs

ADConverter ModulusCounter PortK PortH I2CController

RawValue-
Converter

WarmWater-
Control

OilBunker-
Control

Room-
Control

Solarcollector-
Control

Doghouse-
Control

DCF77-ClockADC-
Control

Poweroutputs

Heating-
Control

PortA PortB

Logical Clock Digital Inputs

Light-
Control

Alarm-
systemDigital Outputs

Serial Interface

Timer



Multiple Inputs

• when there are no distinguishable 
inputs, run method has to check which 
input is written

• solution is declaring pseudo-activities 
for distinct inputs, which calling specific 
function

• deadlines are now input-specific



Conclusion

• REFLEX can be used in practice
– Usability
– Memory Consumption

• Concept of decoupled activities leads to 
high reusability



Outlook

• Analysis of real time capabilities
• Implementation of distributed systems 

with Reflex as base
• SDL toolchain for REFLEX (IHP)



Questions ?


