Predictably Flexible Real-time Systems - a Scheduling Perspective

Gerhard Fohler Mälardalen University, Sweden www.idt.mdh.se/gfr

Real-time Computing Systems

Classic

- airplanes
- industrial production
- medical devices

but also

- cars
- phones
- consumer electronics

other terms

- "embedded systems"
 - computer integrated in system function
 - focus on hardware
 - usually also real-time
- "real-time" e.g. stock market
 - transmission delay not perceived by user
 - not real-time system per se

۲

Roadmap

- activation paradigms
 - determinism vs. flexibility
 - activation paradigms and their implications
- combined approach
- applications
 - real-time and multimedia

Roadmap

- activation paradigms
 - determinism vs. flexibility
 - activation paradigms and their implications
- combined approach
- applications
 - real-time and multimedia

Activation Paradigms

- activation of activities tasks
 - when are events recognized?
 - who initiated activities?
 - when are decisions taken?
- event triggered ET
 - event initiates activities in system immediately
- time triggered TT
 - activities initiated at predefined points in time

Properties – Time Triggered

- offline scheduling
- scheduling table
- slots time triggered activitation of dispatcher
- runtime dispatcher executes decision in table predictable
- October Control of Control of
- complex demands, distributed, end-to-end, jitter, ...
- Iow runtime overhead table
- inflexible can only handle what is completely known before
- inefficient based on worst base what if it does not occur?

deterministic

Properties – Event Triggered

- online scheduling, priority driven
- event activates scheduler which takes decision
- priority rules + test
 - earliest deadline first (dynamic priority)
 - fixed priority
- © flexible not completely known activities can be added easily

flexible

- \odot widely used
- ☺ only simple constraints
- ☺ high runtime overhead for semaphores, blocking, ...
- Imited predictability keeps deadlines, but cannot determine when exactly

Effects on Design

- activation paradigm is central design decision
- "either or" decision
 - advantages of one method at expense of those of other
 - demands outside paradigm need to be "squeezed in"
- system wide implications
 - same properties (e.g., cost) for all activities
 - mostly highest level

monolithic approaches - "power plant" approaches

- single system for single application
- single paradigm for single class of demands
- high effort and cost

Novel Applications

mix of activities and demands

- core system with high demands
 - strict timing behavior
 - safety critical, fault tolerant
 - proven and tested for worst case
- hard real-time applications
 - temporal correctness, etc.
- flexible real-time applications
 - not completely known
 - some deadlines can be missed
- non real-time activities
 - must not disturb real-time activities

ET: not deterministic behavior of critical activities

Roadmap

- activation paradigms
 - determinism vs. Flexibility
 - activation paradigms and their implications
- combined approach
- applications
 - real-time and multimedia

Offline Scheduling

- general, complex (temporal) constraints
- offline scheduler
 - resolves demands
 - constructs *single* solution meeting all demands
 - table for least common multiple of periods
- complete information needed beforehand
- no flexibility

- analysis of offline schedule and demands
- limit task executions target windows
 - demands fulfilled, if tasks execute within target windows
 - starttime, deadline pairs
- ready for dynamic, priority driven scheduling; event triggered

Slot shifting

for complet		eness, all algorithms		Sporadic	Aperiodic	
 theoretic 		al ressulte prov	en coptim alit	y etc.) (r	nany Fifor mu	ae)Soft
implemeevaluateetc		enteø _{eriods} d • Deadlines • Start times	 End-to-end dl Inst. separation Distribution Jitter etc. 	Minimum separation between instances	DeadlinesGuarantee	• No dl
Offline	Sch	x	x			
	Test			x		
Online	Sch	x	x	x	x	x
	Test				x	

Predictable Flexibility

target windows control flexibility of task execution

- target window = original task execution no flexibility, original schedule
- target window after flexibility analysis flexibility of execution while meeting demands
- reduced target windows reduced flexibility, e.g., for jitter control
- modifying target windows selects flexibility of tasks individually

Meeting Novel Application Demands

- core system offline scheduling
- hard real-time applications offline scheduling or online scheduling
- flexible real-time applications combined offline/online approach
- non real-time activities together with combined offline/online
- flexibility individually configured
- guaranteed tasks protected

Roadmap

- activation paradigms
 - determinism vs. flexibility
 - activation paradigms and their implications
- combined approach
- applications
 - real-time and multimedia

Video streaming

large variations

- size and structure of MPEG streams
 - strong compression DVD, fast compression- live

Real-time Resource Management

- guarantee of basic budgets (critical)
- stream adaption (flexible)
 - quality aware frameskipping
 - start decoding only of what can be completely decoded (real-time methods)
 - resources not wasted for incomplete frames
 - efficient resource use
 - Quality aware frame skipping QAFS
- processing of additional frames, reclaiming

Summary

- activation paradigms
 - time triggered
 - offline scheduling, determinism, no flexibility
 - event triggered
 - online scheduling, flexibility
 - predictable flexibility by combination of both
- design independent of paradigm, reuse
- management of individual activites instead of systemwide
- applications, video streaming

THE END