
Parallel Ray-Tracing with a Transactional DSM 
 

S. Frenz, M. Schoettner, R. Goeckelmann, P. Schulthess 
Ulm University, Distributed Systems Department 

frenz@vs.informatik.uni-ulm.de 
 
 

Abstract 
 

Distributed Shared Memory (DSM) is a well-known 
alternative to explicit message passing and remote 
procedure call. Numerous DSM systems and consistency 
models have been proposed in the past. The Plurix 
project implements a DSM operating system (OS) storing 
data and code within the DSM. Our DSM storage 
features a new consistency model (transactional 
consistency) combining restartable transactions with an 
optimistic synchronization scheme instead of relying on a 
hard to use weak consistency model. In this paper we 
evaluate our system for the first time with a real parallel 
application, a parallel ray-tracer. The measurements 
show that our DSM scales quite well for this application 
even though we are using a strong consistency model. 

 
Keywords: Distributed Shared Memory, Parallel Ray-

Tracing, Operating Systems, Consistency Models. 
 
 

1. Introduction 
 
Commercial operation systems (OS) like Unix, Windows 
or MacOS use sockets or remote procedure calls for 
network communication. Traditionally, socket interfaces 
impose implementation of application specific protocols 
with oodles of error conditions upon the developer. As a 
response numerous middleware software packages like 
RMI, CORBA, and .NET offer a rich set of 
communication functionality, but fail to simplify implicit 
sharing of data. They provide distributed database 
functionality, object exchange, and messaging, but very 
limited consistency.  Shared data has to be serialized for 
transport between disjoint address spaces, references have 
to be resolved, and often the full transitive closure for 
pointers has to be identified and handled before 
transmission. The resulting software system is dispersed 
across multiple software layers and development tools. 

As an alterative, the possibility of sharing an address 
space offers an uniform view of the data. Distributed 
shared memory (DSM) systems proposed by L. Keedy [1] 
and K. Li [2] in 1985 and 1988 respectively, can 
implicitly handle access to shared objects without 
serialization nor resolving of references. Thus the 
developer gets a transparent view at shared data and may 
disregard aspects of distribution. 

Equally important is the automatic consistency 
management of replicated data in the DSM. Many 
consistency models have been proposed by the DSM 
community [3]. Weak and weaker consistency models 
were introduced and became thus more efficient but also 
harder to program. Originally, DSM was developed to 
allow execution of parallel programs written for  
expensive multi-processor machines on cheap commodity 
clusters without major modifications. But using weak 
consistency models required artful modifications to the 
source code. We believe that this requirement is one of 
the reasons why the DSM concept is still not widely 
accepted, not even for new application fields.  

Considering this defect the Plurix project implements 
the first OS storing data and code within the DSM. By 
storing everything within the DSM Plurix implements a 
real Single-System-Image (SSI). The latter is widely 
accepted within the cluster computing community and 
each user gains a global and uniform view on available 
resources and programs and it provides the same libraries 
and services on each node in the cluster, which is very 
important for load balancing and migration of processes.  

Orthogonal persistence is another DSM property in 
the sense that any object reachable from the root of the 
cluster-wide name service can persist independent of its 
type. Persistence is directly supported by our 
checkpointing and recovery facilities and does away with 
de- and serialization functions required for file-based 
systems. 

Because system data is also stored within the DSM we 
need a strong consistency model have therefore 
introduced the concept of transactional consistency into 
OS construction. The latter relies on restartable 
transactions and an optimistic synchronization scheme. 
Although we plan to introduce additional weaker 
consistency models in the future to support number 
crunching, the system executes fast even when using 
strict transactional consistency.  

We expect that the Plurix system will open up new 
application fields for DSM systems like virtual worlds, 
telecooperation applications and multi-player games. But 
also traditional DSM applications are addressed like the 
parallel ray-tracing application explained in this paper. 

The paper presents for the first time real performance 
data from an evaluation of our DSM-based Plurix OS 
with a real application and the system itself 
simultaneously in the DSM. In previous work we 



presented a preliminary evaluation where synthetic 
memory access patterns were used and the system was 
stored outside the DSM.  

In section 2 we present those parts of the Plurix 
system which are relevant for the performance evaluation. 
Subsequently, we discuss the architecture of our parallel 
ray-tracer and its parameters used for the measurements. 
In section 4 we present the data obtained from the 
performance evaluation.  In section 5 we compare our 
results to related work. Finally, we give an outlook on 
future work. 

 
 

2. The Plurix Operating System 
 
The Plurix OS is inspired by Oberon system developed at 
the ETH Zurich by Wirth and Gutknecht [4]. The type-
safe implementation language is essentially Java with 
some extensions. Hardware-independence is abandoned 
in favor of machine level language extensions and 
because the performance of the JVM is not sufficient. 
Therefore, we have developed a proprietary Java 
compiler directly translating java source texts into Intel 
machine instructions [5]. 
 
2.1 Memory Organization 
 
Distribution is achieved in a page based distributed 
shared memory (DSM) presenting an identical view of a 
single distributed heap storage (DHS) to all nodes. 

The transactional consistency model (see section 2.4 
for details) is implemented for the DHS, accommodating 
both data and code, i.e. there is no separation between 
user- and kernel-space [6]. Only hardware management 
pages, space for non-transactional interrupt data (called 
interrupt-space) and local stacks are allocated outside the 
DHS. But this memory area can only be accessed via 
special functions of the compiler, available to kernel and 
device drivers only. 

Since all nodes have the same view to DHS and all 
objects are located in DHS, sharing objects among nodes 
is easily done by using the cluster-wide name-service. 
Presence of an object is automatically distributed by 
entering it into the name service. This changes the DSM 
invalidating relevant pages on other nodes and yielding 
the desired object to the name service on any node at the 
next access.  

To prevent indispensable classes and objects from 
being invalidated, these are located on special sys-pages. 
Examples are the memory management or the network 
driver. As a matter of course, all classes called by system-
relevant classes in critical situations must also be system-
classes. 
 

2.2 Interrupt Handling 
 
Interrupt handlers in Plurix as well as in other OSs 
require special care. The handler called by the hardware 
in case of a hardware interrupt have to be always present 
and has to reside on a sys-page. Since not all interrupt-
service-routines are critical to the system, it is not 
mandatory to have all device drivers with service-routines 
and all therefrom called classes or objects stored on sys-
pages. 

Therefore Plurix implements a two-staged nested 
interrupted handling: the first stage detects the origin of 
the interrupt and then decides on the next procedure. 
Either the interrupt was requested by the network card, 
then the network device handler is called. Otherwise the 
first stage interrupt handler re-enables the network-
interrupt and calls the second stage interrupt handler 
inside a device driver, which can be a regular object. 

For interrupt driven I/Os non-transactional buffers are 
necessary which are described in [7]. 
 
2.3 Scheduler 
 
Instead of having traditional processes and threads, the 
scheduler in Plurix works with transactions. We have 
adopted the cooperative multitasking model from the 
Oberon system. In each station there is a central loop (the 
scheduler) executing a number of registered transactions 
with different priorities. Any TA can register further 
transactions. System TAs, e.g. the garbage collector are 
automatically registered by the OS. Furthermore, the OS 
automatically encapsulates all user commands within a 
transaction. 
 
2.4 Restartable Transactions 
 
Any memory access to the DHS is  encapsulated into 
transactions that follow the ACID (atomicity, consistency, 
isolation, durability) properties [8].  

In Plurix durability is granted in an alleviated form 
taking into account the trade-off between topicality of 
persistent data and performance of commit. As all data 
and code resides in the DHS, saving the heap saves all 
relevant information. As all data is modified only within 
transactions, saving all changed pages saves the heap. To 
this end a pageserver continuously collects modified 
pages and writes them to disk [9]. In configurable 
intervals (for example: every two seconds) and whenever 
convenient the pageserver finalizes a consistent image. In 
case of error, fault, drop out or even after shutdown this 
image can be used to restore the cluster with consistent 
data. 

If two or more transactions collide, at least one is 
aborted. The optimistic assumption is that unrelated 



transactions will rarely conflict with each other. Conflicts 
are checked at the end of each transaction according to a 
forward validation scheme [10], i.e. the page addresses of 
all modified objects of the committing transaction are 
compared against all accessed objects of other active 
transactions. If a conflict is determined,  one or more 
transactions must be restarted. Currently, we use a first-
wins strategy that will be extended to improve fairness. 
 
2.5 Transactional Consistency 
 
Transactional Consistency works for both object and page 
based distributed memory systems. To simplify matters 
here the page based mechanism is described, but variable- 
or object-granularity are analog. 

Memory management must keep track of all accesses 
to shared pages. Every transaction starts with all memory 
pages marked as “not accessed” and “read only”. Reading 
a page (or object) sets its state to “used + read only”. 
Writing to an object triggers the creation of a backup 
copy of original page, which is needed again in case of 
abort or in case of external paging requests. The new state 
of  this object, which is now visible only to the current 
transaction, is “used + written” and “readable + writable”. 
An ending transaction publishes all page numbers that 
have been written within this transaction in a write-set 
message, so that each node can compare the list of locally 
used pages with the list of the published write-set to 
detect a possible collision. In case of a collision every 
affected node resets its changed pages and restarts the 
current transaction. 
 
Comparison to Other Consistency Models 
Major issues in distributed systems or multiprocessor 
environments are topicality and semantic correctness of 
shared memory. Topicality is controlled by the memory 
model, but semantic correctness usually is managed by 
the programmer. 

The following pseudo-code example illustrates both 
issues: given two shared variables x and y describing  a 
geometrical point, node 1 wants to square and node 2 
wants to rotate the shared point. Both operations read x 
and y, need a temporary variable for calculation and store 
their results back to x and y. 
 
Node 1 Node 2 
shared float x; 
shared float y; 
void quad() { 
 float a=x; 
 x=x*x-y*y; 
 y=2*a*y; 
} 

shared float x; 
shared float y; 
void rotate() { 
 float b=y; 
 y=x; 
 x=-b; 
} 

If node 1 changes x/y without notification of node 2 
before node 2 will calculate another x/y, the calculation 

of node 1 is lost. If node 1 and node 2 “simultaneously” 
calculate a new pair x/y, the execution might be: 
void quad() { 
 float a=x1; 
 x2=x1*x1-y1*y1; 
 
 y3=2*a*y2; 
} 

void rotate() { 
 float b=y1; 
  
 y2=x2; 
 x3=-b; 
} 

In this case x3/y3 is destroyed, as it is the result neither of 
quad nor of rotate. This means if memory is not strict 
consistent, both nodes may read “old” values and 
therefore destroy new results or also overwrite one 
another. So explicit synchronization by the programmer is 
needed. 

Even with strict consistency, there is the danger of 
loosing calculation or  totally invalidating information: 
even though each single access to memory is strictly 
consistent, for most operations a semantic group of 
accesses must start with strictly consistent data and must 
then  run atomically, i.e. several semantic groups with 
write-access to the same shared values are executed 
sequentially. 

Consequently most programming systems have 
introduced barriers or locks, whereby setting these 
constructs require the nodes to communicate with each 
other. In this example each method with access to x or y 
has to inspect a lock in case of reading and to atomically 
test-and-set a lock in case of writing. 

Transactional consistency provides strict consistency 
and includes semantic aspects in the form of transactions, 
because writing to a shared variable forces serialization of 
affected transactions, but parallel reading is allowed with 
full performance and latest data. 
 
Implementation of Protocol 
In Plurix not every access to an object is tracked, but only 
the first access to a page. This reduces the tracking 
overhead and enhances performance with the assistance 
of processor-built-in memory management unit (MMU) 
of Pentium or above CPUs, which automatically let the 
hardware set the appropriate bits in the page management 
tables. 

Reading from or writing to a page which is not present 
results in a page-fault, which in turn requires the kernel to 
fetch this page from another node. After receiving the 
missing page program execution proceeds as if the page 
had been already present before the page fault, i.e. in case 
of reading: setting the “used”-bit by MMU, and when 
writing: raising protection exception and creating a 
shadow page as described above. 

In page-based systems like Plurix at the end of a 
transaction there are two options to inform other nodes of 
modified pages: either by sending the content of the pages 
(update protocol: pages on other nodes are automatically 
refreshed) or by sending the numbers of all modified 



pages (invalidate protocol: pages on other nodes are 
discarded and refreshed on access). Plurix implements the 
invalidate-semantic, as this offers reduced network load if 
not all pages are required by other nodes. 

To ensure atomicity (i.e. sequential order) of separate 
end-of-transaction operations, Plurix uses a token-
mechanism to arbitrate which node out of several 
competing ones may commit. Each commit increases the 
current 64-Bit commit-number, which can be used as 
cluster logical time. This commit number is included in 
every packet, so all receiving nodes can easily determine 
whether they missed a commit action and initiate 
appropriate recovery [9]. 

A node receiving a commit message will invalidate all 
locally mapped pages listed in this message. If the current 
TA used at least one of these pages it will restart as there 
was a collision with the currently committing transaction. 
If a TA wants to revoke its changes or does not need its 
changes, it may opt to abort itself. An example for 
voluntary abort is a packet receiver which finds that there 
is currently no packet available. The voluntary abort will 
avoid imposing an unnecessary commit on the other 
nodes. For the DHS memory manager this voluntary abort 
is like a collision, so all written pages are restored from 
shadow images. This saves network bandwidth and 
commit processing time on this node (creating packet, 
sending packet) and on all other nodes (receiving packet, 
checking pages), and it possibly saves substantial 
amounts of memory and time for garbage-collection. 

For example in case of an error-detecting compiler-
run with hundreds of new objects, these objects are easily 
cleaned up with voluntary abort at minimized costs. 
As described above Plurix currently uses a first wins 
strategy. If balanced fairness or prioritization of 
transactions is needed there are several implementation 
options. 

Some handicapped or higher prioritized TA could 
signal invalidation of all needed pages and ignore the 
page-request of other nodes. As a consequence all nodes 
conflicting with this TA are forced to wait for this 
transaction to commit. This algorithm is not 
recommended as it is hard to control, delays many 
transactions and easily leads into deadlocks. 

Another way to achieve fairness is to ask other nodes 
if they do not object to commit on modified pages. This 
leads to delay at end-of-transaction, but offers some 
choice on selecting the winning transaction and avoids 
deadlocks. 

As there is no fairness problem with our current 
applications, there is no need of prioritization, but this 
will be of interest in future work. 

Our DSM protocol is based upon non-reliable 
broadcast and non-reliable unicast in a single LAN-
segment. Internal mechanisms check received messages 
and global time and lost packets will be detected. Action 

after packet loss depends on type of packet: most packets 
are re-requested and therefore a simple time-out can 
handle packet loss. Only packets belonging to a commit 
are not requested and therefore can not merely be re-
requested. 

The current implementation handles this severe error 
condition by falling back to a previously saved system 
image from the pageserver. The fall back operation takes 
less than 240 ms on Athlon XP+2000 until command 
prompt. The current implementation does not 
automatically restart old transactions after a recovery 
event as one of them could have caused the fallback. 

 
 

3. Parallel Ray-Tracer Application 
 
3.1 Implementation 

 
To verify the performance of the transactionally 
consistent DSM, we ported the ray-tracer used by project 
5 of class 6837 at Massachusetts Institute of Technology 
[11]. 

Supported objects of this lean ray-tracers are spheres 
and triangles. Each object may have its own surface, 
which describes color, shininess and the coefficients for 
the used phong model: ambient, diffuse and specular. 

Available light sources are point lights, that feature 
adjustable intensity without direction and are mostly 
comparable to a bulb with zero size, and an ambient light, 
which is omnipresent and therefore raises no shadow. 

For each display pixel  a ray is initialized with a 
corresponding angle with respect to the camera. Each ray 
is intersected with all objects (no frustum) and restricted 
to the nearest one with intersection, giving the 
intersection point of this ray. 
 
The color of an intersection point is calculated from the 
surface of the intersected object, the visible lights at this 
point and the reflection of the intersected ray. To 
calculate the reflection a new ray is initialized and traced, 
which results in recursive calls to the intersection method. 

All rays are independently calculated but use the same 
scene-description, which in our case is shared via DSM 
and retrieved from the DSM-based name-service. Access 
to objects describing the scene is read-only, so there is no 
conflict. As successful write to a shared object leads to 
aborts on all machines which have at least read the 
modified page of this object, there would be an blatant 
bottleneck in calculation if several transactions try to 
publish their results via writing to a single page. 

 
To retain usability and responsiveness for cooperative 
multitasking, not a complete block or even a single line 
should be calculated at once to retain usability and 



responsiveness. In a number crunching environment this 
is not important, but  here a ray-tracer is used to test 
transactional consistency and over-all performance of 
Plurix. So calculation of one line is divided into 
adjustable periods of calculation admitting  intermittent 
user-inputs. 

We have used a two-phase algorithm: a very short 
phase to allocate lines and a time consuming stage to 
calculate pixels in allocated lines. Compared to 
calculation of pixels, memory-allocation is not time 
consuming. 

There is no static partitioning of the picture to be 
calculated, each node allocates a block of lines, calculates 
all pixels in this block and then proceeds with a new 
block, if there are any left. At the end of calculation there 
is a short period of time where only a few nodes are 
calculating, i.e. running time is not identical on all nodes. 
 
3.2 Parameters of Ray-Tracer 
 
There are several parameters affecting the time to 
calculate the same scene: 

• pixels per line 
• number of lines 
• lines per allocation-block 
• time per calculation-period 
• number of nodes 

Pixels per line and number of lines each affect time in the 
linear proportion. Lines per allocation-block determines 
number of allocations and therefore in combination with 
number of nodes is linked with probability of collisions at 
allocation of a block. Increasing lines per allocation-block 
on the one hand increases probability of collision because 
time to allocate grows, but on the other hand it decreases 
probability of collision because less blocks are allocated. 

Time per calculation-block determines the total 
number of transaction-calls needed to calculate this block 
and therefore indirectly time consumed by operating 
system and other transactions. 

The number of nodes should be inversely proportional 
to time in best case. In reality this is affected by 
administration effort, network traffic and collisions. 
 
 
4. Performance Evaluation 

 
The measurements were performed in a cluster with 12 
nodes, each configured as following: 

• processor: Athlon XP2500+ at regular 1.8 GHz 
• motherboard: Asus A7V8X-X 
• memory: 512 MB DDR-RAM 
• network: 3com 905B-TX at 100 MBit half 

duplex connected to Allied Telesyn International 
CentreCOM MR912TX HUB 

The scene used for ray-tracing is lit up by 3 light sources 
and consists of 8 triangles and 104 spheres with reflecting 
surfaces: 

 

 
Figure 1. The Scene 

 
Several test series with different parameters (see chapter 
3.2) were made to test the performance of transactional 
consistency and to show the influence of varying the 
parameters. To cope with the plethora of measurements, 
diagrams are divided by aspects. The legend of a diagram 
contains resolution in pixel, lines per allocation-block and 
time per calculation-block. The longest time of all 
calculating nodes (see section 3.1) is taken for the 
diagrams. All times are in milliseconds. 

 
4.1 Allocation-Block and Transaction-Time 
 
All pictures are calculated with resolution 640x480, so 
the time spent usefully is identical. Changing the length 
of the calculation-block from 30 ms to 10 ms implies 
more transactions and therefore more overhead by the 
cooperative multitasking, as all other transactions in the 
central loop will be executed more frequently. Changing 
the allocation-block from 40 lines to 8 lines creates more 
collisions and is irrelevant if only one node is calculating. 
 

 
Figure 2, time by number of nodes 



4.2 Size of Picture 
 
As expected in theory doubling pixels requires twice the 
time. Therefore doubling one parameter of resolution 
results in quadruplication of time, which in matters of 
time can be mostly absorbed by  quadruplication of 
nodes. 

 

 
Figure 3, time by number of nodes 

 
 

4.3 Number of Nodes 
 
For low resolutions the time needed for calculation is not 
sufficient for distributing the work over more than four 
nodes, as each node should at least allocate three 
allocation-blocks. The theoretical maximum of scaling is 
printed as dotted line. Even in worst case the effective 
scaling factor of four nodes is greater than three, i.e. even 
three single nodes without DSM-overhead could not 
calculate each a third of this picture in the same time as 
four nodes with Plurix calculate the complete picture. 
 

 
Figure 4, speed-up by number of nodes I. 

 
Distributing a large picture exhibits linear scaling on 
more than four nodes, which was experimentally verified 
for up to twelve nodes. 
 

 
Figure 5, speed-up by number of nodes II. 

 
 
5. Related Work  
 
In 1985 L. Keedy presented an early idea of DSM [1]. In 
the following years a multitude of software and hardware 
level systems as well as hybrid architectures have been 
developed [12]. The proposed systems also differ in the 
used sharing unit: variables, objects, or pages. All these 
systems neither store all data nor code within the DSM. 
Typically, DSM data is allocated using special memory 
allocation functions and the programmer decides whether 
data is allocated in DSM or locally.  

We are aware of other Java OSs like JX, JavaOS, and 
JOS. All these operating systems are not using a DSM in 
any way but are relying on traditional message passing 
for network communication. 

The closest to our approach is the Kerrighed project 
adapting a Linux kernel for DSM operation including 
checkpointing and recovery [13]. Kerrighed uses 
sequential consistency which is also a strong model but 
code is not stored within the DSM and again only 
dedicated data objects. Furthermore, the research goals of 
Plurix and Kerrighed are different. The latter is mainly 
designed for parallel application running both DSM- and 
MPI-based algorithms whereas Plurix wants to explore 
new distributed applications for DSM systems. 

Finally, Plurix is the first native operating system 
tailor made for DSM operation and transactional 
consistency was never used in any other existing DSM 
environment. 
 
 
6. Conclusion and Future Work  
 
In this paper we have evaluated the Plurix OS for the first 
time running itself within Distributed Shared Memory  
with a real application. The implementation is a proof of 
concept that it is possible to run OS code within a DSM 
and that even a strong consistency model can offer good 
scalability.  



The measurements demonstrate potential high 
performance and scalability of transactional consistency 
[10] as it is implemented in Plurix [14]. Furthermore it 
simplifies programming in an environment of shared 
memory, as synchronization is implicit and need not to be 
considered by the programmer. There is no need for 
locks, barriers or other explicit calls to the runtime 
environment, because access to shared memory is 
automatically synchronized by the DSM protocol, which 
implements transactional consistency. 
Additionally Plurix offers simplicity and safety of object 
orientated programming in familiar manner and an easy-
to-use as well as type-safe kernel-interface [6]. 
Substantial work is pending on false sharing, fairness and 
lazy objects like frames of live video, which do not 
require strong consistency such as transactional 
consistency. 

 
 

7. References 
 
[1] J. L. Keedy and D. A. Abramson: “Implementing a 

Large Virtual Memory in a Distributed Computing 
System”. In Proceedings of the Eighteenth Annual 
Hawaii International Conference on System 
Sciences, 1985. 

[2] K. Li.: “IVY: A Shared Virutal Memory System for 
Parallel Computing”. International Conference on 
Parallel Processing, 1988. 

[3] D. Mosberger: “Memory Consistency Models”. TR 
93/11, Department of Computer Science, University 
of Arizona, Tucson, 1993. 

[4] N. Wirth, J. Gutknecht: “Porject Oberon”. ACM 
Press, Addison-Wesley, New-York, 1992. 

[5] M. Schoettner, “Persistente Typen und 
Laufzeitstrukturen in einem Betriebssystem mit 
verteiltem virtuellen Speicher”, PhD thesis, Ulm 
Univeristy, Germany, 2002. 

[6] R. Goeckelmann, M. Schoettner, S. Frenz, P. 
Schulthess: “A Kernel Running in a DSM – Design 
Aspects of a  Distributed Operating System”. 
Department of Distributed Systems, University of 
Ulm, 2003 

[7] T. Bindhammer, R. Goeckelmann, O. Marquardt, M. 
Schoettner, M. Wende, P. Schulthess: “Device 
Driver Programming in a Transactional DSM 
Operating System”. In Proceedings of the Asia-
Pacific Computer Systems Architecture Conference, 
Melbourne, Australia, 2002. 

[8] P. Dadam: “Verteilte Datenbanken und 
Client/Server-Systeme”. Springer-Verlag 
Heidelberg, 1996. 

[9] M. Schoettner, S. Frenz, R. Goeckelmann, P. 
Schulthess, “Checkpointing and Recovery in a 

transaction-based DSM Operating System”, to 
appear in: Proceedings of the IASTED International 
Conference on Parallel and Distribted Computing 
and Networks, Innsbruck, Austria, 2004. 

[10] M. Wende, M. Schoettner, R. Goeckelmann, T. 
Bindhammer, P. Schulthess: ”Optimistic 
Synchronization and Transactional Consistency”. In 
Proceedings of the 4th International Workshop on 
Software Distributed Shared Memory, Berlin, 2002. 

[11] Tomas Lozano-Perez and Jovan Popovic: “Project 5: 
Ray Tracing”. http://graphics.lcs.mit.edu 
/classes/6.837/F01/Project05/project5.html, MIT, 
2001. 

[12] “A Comprehensive Bibliography of Distributed 
Shared Memory”. Technical Report TR96-17, 
Department of Computing Science, University of 
Alberta, 1996. 

[13] http://www.kerrighed.org   
[14] Homepage of Plurix: www.plurix.de 


